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The relation between renormalization and short distance singular divergencies in quan-
tum field theory is studied. As a consequence a finite theory is presented. It is shown
that these divergencies originate from the multiplication of distributions (and worse-
defined mathematical objects). Some of them are eliminated when the multiplication is
defined based on dimensional regularization, while others disappear when the states are
considered as functionals over the observables space. Nonrenormalizable theories turn
to be finite, but anyhow they are endowed with infinite arbitrary constants.

1. INTRODUCTION

Quantum field theory can be reduced to the knowledge of Wightman functions
(or T-ordered Feynman functions, retarded functions, or euclidean functions, etc.)
(Haag, 1993; Roman, 1969). These functions are short distance singular mathe-
matical objects (i.e. they diverge in the so-called “coincidence limits,” that is, when
some of their variables coincide); for example, the symmetric part of the two-point
functions has a Hadamard singularity, precisely

WO, XY =uoct+vinjo|+w (1)

whereo = (1/2)(x — x)?, andu, v, andw are smooth functions.These local
singularities give rise to the infinite ultraviolet results of quantum field theory
(Brown, 1992} To eliminate these infinities the theory must be renormalized in
such a way that meaningless divergent expressions become meaningful. This tech-
nigue is well-known but not completely satisfactory, because by using itte
learned to peacefully coexist with alarming divergenciesut these infinities are

LInstituto de Astronond y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires,
Argentina.

2For Wightman functions see Haag (1993), cap. VI, Eq. (3.11). For Feynman functions see De Wit
(1964), Egs. (17.61) and (16.72). For symmetrical functions see Castagrah¢1987).

3There is also another kind of potentially dangerous singularities as we will see in Section 6.
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still with us, even though deeply buried in the formalism” (Roman, 1969). On
the other hand, as we know that the short distance singularities are the cause of
renormalization, if we somehow remove these singularities we will directly obtain

a finite and exact quantum field theory from scratch. Phrased in another way: in
this paper we will find the short distance singularity in two quantum field theory
models and we will show that if these singularities are subtracted the theory turns
out to be finite. The subtraction of short distance singularities has been essentially
used for many years, e.g., in quantum field theory in curved space—time, (Anderson
et al, 2000; Birrell and Davies, 1982; Castagngial., 1987) (and other chapters

of quantum field theory, e.g., Brown, 1992, Chap. 5), but it was not considered as
a general method with a rational motivation, as we are now trying to prove.

We hope that the study of the singular short distance structure will lead us, in
the future, either to find Lagrangians free of this sickness (may be superstring or
membrane Lagrangians) or to find more elaborated ways to remove this structure.
Moreover, since the quantum field theory equations can be highly nonlinear it will
be clear that, in a general case, the singular structure cannot be just removed by
adding terms similar to those of the bare Lagrangian. The mechanism must be more
general. Here we are presenting the physical basis of this mechanism. Essentially
we believe that, since the origin of the problem is the short distance singularities,
philosophically it is wrong to modify the Lagrangian until it yields a finite theory.
The cure must be provided where the sickness is located.

We will find the singular structure using usual dimensional regularization
(Bollini and Giambiaggi, 1972) and, in the cases where possible, Hadamard regu-
larization (Castagninet al, 1987); moreover, we will remove it ko different
waysat two different levels of comprehension, which we will discuss below.

1.1. Simple Subtraction Method: Detection of the Local Singularities

In Sections 2-5 we will review this well-known method with three purposes:
(i) To introduce the main equations, (ii) to detect the local singularities (as in Egs.
(28), (43), (80), (104), and (116)), and (iii) to show the modification of the roles
played by the coupling constant when we go from the usual method to the new
one and to obtain renormalization group equations with the new method. We will
study the theory in a space ofdimensions. Generically the theory will be finite
for n #£ 4, but it will present short range singularities wher> 4. For example,
any two-point function will have the structure

w@(x — x') = WO (x — x') + w@O(x — x') 2)

wherew®®(x — x') is the singular component (in a sense that we will precisely
describe below), that diverges whan- 4 orx — x’, andw®@®(x — x’) is the
regular one. The subtraction method, for these functions, consists in making the
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singular part equal to zero or in subtracting the singular part fndfi(x — x’).
We will give two examples of this procedure

1. Scalar quantum field theory in a curved space—time (a theory invariant
under the group of general coordinates transformations, with no self-
interaction and therefore with linear equations with variable coefficients)
in Section 2. In this case we only need two-point functions like those of
Eq. (2).

2. L¢* theory (a theory invariant under the Poirgagioup with self-
interaction and therefore with nonlinear equations with constant coeffi-
cients) studied in Sections 3, 4, and 5. In the second example we will need
N-point functions.

These examples are chosen not only because they are the simplest but also
because the two theories are quite different and cover a large range of pherfomena.
Then, let us exactly state how we will define the singular and the regular
components in the general case\spoint functions, in complete agreement with
the usual procedures of dimensional regularizatiow) (x4, x,, ..., xn) are
some (symmetrid)-point functions (like Feynman or Euclidean functions) we can
define the corresponding functional generator (Haag, 1993, Eq. (1.2.21); Brown,
1992, Eqg. (3.2.11)) as

B [ =
Z[p] = expi {W NZZO/W(N)(XL X2, ... XN)

x p(X1)p(X2) - - p(Xn) dXqg A% - - - dXn 3)

where

WM (xg, X, ..., Xn) ~ (O To(X0)p(X2) - - - P(xn)|0) @)

But, in a realistic field theory (namely a theory with interaction) these functions
are badly defined (as the two-point function of Eq. (2)) since they are objects with
mathematical properties that aserse than those of the distributignaoreover,

if these objects were distributions all the integrals

/ WG, X LX) (K) (42 -+ - p(xn) dxa Ao -~ Ay

4For example, conformal or trace anomaly, conservation of the energy momentum tensor, etc. (see
example i).

5The symbol~ means that the r.h.s. of the next equation can also be truncated (Haag, 1993,
Egs. (11.2.18) and (11.2.23).
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would be well-defined (if, e.94(x) € S the Schwarz space). But this is not the
case, as we will see. Hencg|p] and its derivatives are not well-definéd.

As we have already said in the case of quantum filed theory in curved
space—time we only deal with two-point functions. But for thg* theory we
will deal with the two-, four-, and six-point functions, in the coincidence limit
where some points go to 0 and some points go to an arbitrary valsecause
these are the only relevant functions in the perturbation expansion of this theory
up toA? order. So we will be only interested in defining the singular and regular
parts of the functions/®(xy, x,), in the coincidence limik; = x, = 0, function
w®(x1, X2, X3, X4), in the coincidence limik; = X, = 0, X3 = X4 = z, and func-
tion w®(xy, X2, Xa, Xa, Xs, Xg), in the coincidence limik,; = X, = X3 = 0, X4 =
X5 = Xg = 2. We will see that these coincidence limits have the general form
W@ (0))’[w®@(2)]%, namely the product of the power of an infinite quantity multi-
plied by the power of a distribution (or a worse mathematical object). In fact, these
powers appear in the higher order point functions (see Haag, 1993, Eq. (11.2.18)).
So we have two problems that we will solve using dimensional regularization:

i. To obtain the regular part ov®(0): It is an easy problem since via
dimensional regularizationy®(0) reads

C dgm

@(0) =
w0 =) 5z (5)

whereC is a natural number and®”) are some coefficients. Then the
singular and regular components will be defined as

d»

C
(2)(0) (O] Z - (6)

and
[w(z)(z)](r) =d@ (7)

Then the regular part of{®(0)]? is simply [d©]%.

ii. To obtain the regular part off®(z)]*: This is a more difficult problem
since we must multiply the ill-defined functian® (x4, x,) by itself. But
functionw®(xy, x») is worse than a distribution, so it cannot be multi-
plied by itself in a unique and well-defined wayhus we will be forced

6Namely, axiom B of (Haag, 1993, p. 58) is only valid for free theories, since from this axiom and
Schwartz “nuclear theorem” it is shown that (4) is a distribution. Moreover, it is hecessary not
only that Z[ o] be well defined but also it8/d,-derivatives. So alv™(xq, xo, ... ., Xn) must be
well-defined functions after renormalization.

"This is where one type of divergency is “deeply buried in the formalism” (Roman, 1969). We will
find another type of potentially dangerous divergencies in Section 6.
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to define the multiplication procedure for, for examplg{q]2 and @13

in an adhoc way based aimensional regularizatiofsee Brown, 1992,

pp. 162-167, 207-214). To stress this fact we will respectively call them

[W@]@2 and w®]@3 (where the superscript “d” comes from “dimen-

sional regularization”). Then thaultiplication procedurevill be the fol-

lowing:

a. Using dimensional regularization we will find that the powers are reg-
ular whenn # 4, but whem — 4 they behave as

(W] Z o S)f)?s ®)

whereD is a natural number and(*%(z) are distributions (showing
that, in effect, the objects we are dealing with are worse than distribu-

tions).
b. The singular and regular components will be defined as
A d(a 8) Z
(W] Z 2)2 ©)
[wP@] " = d“9 (10)

Moreover, the multiplication (ii) and the procedure to take the regular
part forz = 0 (i) arenot commutativeAfter these definitions we can sub-
stitute W@ (0)]# and W@ (2)]* by w®(0))]# and Ww®(2)] @), Then
if we consider only these regular parts, which are in general distributions
(but they are regular functions in the two examples below), the functional
generatoZ [ p] and its derivatives (Eg. (3)) turn out to be as well-defined as
the theory that it generates. The existence of singularities like those of the
above equations is proved by the examples below (see also Section 5). The
decompositions (6), (7) and (9), (10) are not unique, stce co + cor
oo = ¢ - 0o, for any finitec. This ambiguity will be present in our method,
as in ordinary renormalization theory, and it yields the running coupling
constants and the renormalization group, as we will see.

1.2. Functional Method

In Section 6 we will present a mathematical structure that naturally yields the
elimination of the singularities. We will follow the line of thought of Laura (1997,
1998) and Castagnino and Laura (2000), where a formalism to deal with systems
with continuous spectrum was introduced. It proves to be useful in the study of
decay, equilibrium, and decoherence (where we have defined a final intrinsically
consistent set of histories). So we claim that perhaps itderseral formalism
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that can also be used in the problem dealt with in this paper. This mathematical
structure would also be the rational justification of the somehow dictatorial or
childish subtraction method. This is the main contribution of the paper. The idea is
the following: Coarse-graining is a well-known technique where some features of
a system are considered relevant while others aré b functional method of
Laura (1997, 1998) and Castagnino and Laura (2000) is a generalization of coarse-
graining? where the states are considered as functional over a certain space of
observable&® Using this philosophy we will postulate that physical observables
are such that they cannot see the singular components of the states because these
components are irrelevant for these observables. Symmetrically, singularities could
be contained in the observables and we can postulate that physical states cannot
see the singular part of the observabifeB this way we will obtain the automatic
subtraction of all kinds of singularities. There is a good physical reason for this
postulate: the singularities (either of states or observables) are just mathematical
artifacts originated in the oversimplified Lagrangian that we usually choose. Then,
clearly physical observables or states cannot see these mathematical, unphysical
objects. In a more intuitive language, the physical observables or states do not
see the singularities because they are too small (pointlike). Possibly the physical
observables and states just see up to Planck’s IeéAgth.

Using the Jaynes philosophy (Jaynes, 1957a,b; Katz, 1967) we can say that
if physicalobservables cannot sesathematicakingularities (which in fact is a
very reasonable position) then the (singular) states of the usual theory are in real-
ity biased objects because they contaibitrary, unphysical informatioli.e., the
singularities) that cannot be measured by the physical apparatuses that we have in
our laboratory, i.e., our physical observables (and in reality this is an experimental
fact: since apparatuses measure the values given by the finite renormalized the-
ory). Then the (rough material) singular states, observables, and the mean values
obtained from them ardgiased, overinformedbjects containing dubious informa-
tion, because in fact “we have a basic ignorance of the nature of infinite energies
or infinitesimal distances” (Brown, 1992, p. 63), while renormalized (or free of
any kind of singularities) states, observables, and mean valueslaissedbjects
containing just the physical information available. In fact, to suppose that we know

80r, in observables language, the observables of theory measure only the relevant features.

9For example, classically, coarse graining is that particular case where the functionals are built using
the characteristic functions of lattices in phase space (see Laura, 1997, 1998).

10Moreover, this is the natural way to face the problem since the observables are more primitive than
the states; see Haag, 1993.

1 Really this will be the case since observables are productskgeg(x2) - - - of field ¢(x), which
are distributions or worse-defined mathematical objects.

12\We could as well postulate that the singular part of the observables only sees the singular part of the
state. Even if there are physical reasons to introduce this postulate in the case of decoherence, they
are absent in the case of renormalization (see Section 6.2)
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and measure everything would be an “inexcusable hubris” (Brown, 1992, p. 64).

Moreover the resulting theory turns out to be insensitive to our degree of knowl-

edge (originated more or less in the precision of our measurement apparatuses),

thus we simplypostulate that this degree of knowledge is, and cannot be, infinite

All this philosophy is embodied in the mathematical structure studied in Section 6.
We will discuss our conclusions in Section 7.

2. FIRST METHOD: SCALAR QUANTUM FIELD THEORY
IN CURVED SPACE-TIME

This theory is the simplest nontrivial example of the method, the theory of a
scalar neutral massive field in a curved space—time (of dimens&ince we need
a formalism prepared for dimensional regularization) with meggigx).*® Let us
consider the actidnh

(69) S=§+Sn (11)
where
(611) § = / (—0)2(167Go) }(R — 2A0) d"x (12)
and
Sn= [ (-0t Lud (13)

wherelL , is the matter Lagrangian

1
(3:24) Lm(x) = 510" ()¢ (x),u(x) — [ + £R(X)]¢?) (14)

Go and Aq are the bare Newton and cosmological constants respectiveiy,
the scalar field masg*” the inverse metric tensor (signatute —, —, —), g its
determinantt a numerical factor, anB(x) the Ricci scalar. For an in—out scatter-
ing we can define the functional generaijip] such that

(6.15) Z[0] = (out, 0| in, 0) = €W (15)
SO:
(6.19) W = —ilIn{out, 0] in, O) (16)

13The expert reader may go directly to Section 5 and consider Sections 2-didetical appendix
to be read after Section 7. But we consider that this didactical discussion is essential in order to
convince the standard reader that the new formalism also works in practice.

14For the sake of conciseness we do not demonstrate the basic equations of quantum field theory in
curved space-time. We just quote the number of the equation of Birrell and Davies (1982) at the
beginning of each of these. In Sections 3, 4, and 5 we will use Brown (1992) for the same purpose
in the Ag* case.
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ThenW can be computed using the effective Lagrandiapdefined by
636) W= [[-g001" Ler() 00 (17)
whereL s reads
(6.37) Ler(X) = = lim / dn? ARS(x, x') (18)
2 x>x Jo2
whereAPS(x, x') is the De-Witt—-Schwinger—Feynman—Green function:
(3.138) ARS(x, x') = —i AZ(x, X)(4r) "2 / ids(is) 2
0
_im?2 i /A
xexp[ im“s + 2is] F(x, x';is) (19)

Theo (X, X) is half the square of the geodesic distance betwesmdx’, A(x, x'),
is the van Vleck—Morette determinant, and

(38.137) F(x, X';is) = ap(x, X) + as(x, X)is + ax(x, X)(is)>+---  (20)

where thea coefficients can be obtained from Birrell and Davies (1982), Egs.
(3.131), (3.132), and (3.133), and corresponds to an expansion in the gye(xy
and its derivatives, precisely to orders 0, 2,.4jn these derivatives. The coeffi-
cients are biscalars, namely all the formalismis covariant under general coordinates
transformation.

Equation (18) is the simple nontrivial example of the relation betwegn
and the two-point functiodBS(x, x’) inthe limitx — x’, where in factAPS(x, x’)
has a short distance singularity that makegga divergent quantity, as we will see.
If we want to retain th& = 4 dimension oL, (length)#, also whem £ 4, we
must introduce an arbitrary mags ThenL ¢ reads

n-4 oo

645 L= F () SapomAr(i-3) @
=)

wherea; (x) = a;(x, x) are functions of the curvatures and its derivatives, and the
I" function diverges when — 4.

2.1. Renormalization Using Dimensional Regularization

By the dimensional regularization method everything is now prepared to
renormalize the theory. Whan— 4 the first three terms (those that correspond



Renormalization and Short Distance Singular Structure 2151

to orders 0, 2, and 4) diverge and we obtain the divergent or singular component
of Leg that reads (we have dropped t©¢n — 4) terms):

2
(6.44) LO(x) = —(4n)" { - i 7 %[V in <%>“

(-5 raw) e
where:
(6.46) ao(x) =1
(6.47) ay(x) = (% - S)R
(6.48) ax(x) = l—;ORaﬂya RYY? — 1—20%‘} R
—é(%—E>DR+%<é—E>2R2 (23)

whereR,;, 5 is the curvature tensor arig,s = R}, ;. The usual renormalization
procedure is to absorb this singular componentin the§as® we can renormalize
Go andAg as

32T m2G, 1 1 m?
(6.50) Apnys= Ao+ =2 { o E[” +1In (F)“ (24)

om2(t—g) [ 1 1 m?
(651) Gonyo = Go/L+ 1680 7 — 2){ n—at E[V in (F)“
(25)

(where we have neglected the square terms in the bare constants) so we@hoose
and Ag in such a way thaGpnys and A pnys turn out to be finite whem = 4. But

this is not enough since the divergence of #hé) term cannot be eliminated in
this way, so the theory with actio®, is not renormalizable. But, if we add three
“H”terms to the gravitational Lagrangian, that are linear combinations of the three
terms of Eq. (23), i.e., linear combinationsRf, R,, R*", Rys,s R*?, andOR,
(there are only threeH” terms because there is a relation among the last four
terms) and renormalize the three corresponding coefficients (knownhms)

the theory becomes renormalizable and finite (see Birrell and Davies, 1982, Eqs.
(6.52)—(6.56)). So, from now on we will consider that thekE terms are added

to the gravitational Lagrangian (12).
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But let us observe that essentially what we have done with this standard
renormalization recipe is to define, as proved in Birrell and Davies (1982), a
regular-subtracted Lagrangi@nthat forn = 4 reads:

1

(659) L0 = Leg— LO = —/0 Zaj(x)(is)j‘3e“m25ids (26)
j=3

3272

which turns out to be finite and can be used instead of the divetggtif Thus

we can foresee that both the standard renormalization recipe and the subtraction
recipe coincide. What we have really made is a subtraction using dimensional
regularization. Making the same subtractionARS(x, x’) (Eg. (20)), we obtain

the regularAEs(r)(x, x).1” We will make this calculation in the next section using
Hadamard regularization (Castagnino, Harari, andshéhi"1987) because using

this method we can better show the presence and nature of the local singularities.

2.2. Hadamard Regularization and the Subtraction Recipe

Let us now see how we can directly work in the= 4 case. The divergencies
now appear whex — x’ (not whenn — 4 as in the previous section). In this
section we will see how the two singular behaviors are related. The effective
Lagrangian (21) reads

AZ(x,X) [ ds

(638) Ler=—lim —2= | e ™ Plax x)

+ag(x, X)is + ap(x, X')(is)* + - -] (27)
From Egs. (19) we may compute
ARS(X, X') = —i M/ ids(is)"2e M~ %)[ag(x, X') + ay(x, X)is
(472 Jo

+w@m%wf+~l=A?@mﬁ+;A?m@mﬁ (28)

15\We are using a particular criterion to define the singular component. This criterion is neither unique
nor irrelevant (Castagninet al, 1986). It is clear that the singular term must have the form
geometrical objegtnamely invariant under general coordinates transformations). But this object can
be chosen in a variety of ways, since, as we have said, we knowthato + ¢ orco = ¢ - oo for
any finitec.

16Equation (26) already shows in Birrell and Davies (1982) that subtraction was used in quantum field
theory in curved space-time, as we have in the introduction.

17Since this is the only nonvanishing truncated point function in the theory, all ordinary point functions
of the theory are finite and they can directly be computed.



Renormalization and Short Distance Singular Structure 2153

where (De Witt, 1964, Egs. (17.61) and (17.62))

55—~ _ Afag A 1
AP X) = 5 28(0) — g00)| e - )

(2 )2
(mao 3m®*a; + 6m?a, — 6ag) + - - ] (29)

2.
and
1 1
Azay Az e’ 1
ADS(ZI.) X, X/ — =% ~" log— 2m2 - m2 —a
P ) 47120+2712 g2| d 2( % —a)

1m2 20
22 aM %y

S 4 > (2 )2 56 94
-m” —2ma; — a; —— =M — —-Mma
X<4 : 2) 2 2. 6\3" 0

3
15 , 9 Az a ag ay
—mMm‘a, — —a i = = 4+ —+...
tpyMmess 3>+ ]2712[(4m2+4m4+8m6+
20 ag a,
- | = —_— 30

According to dimensional regularization the singular partA@S(x, x) corre-
sponds to the one with coefficierds, a;, a, (see (22)). The remaining terms are
the regular part (see (26)). Then,

1 1
A2ag A2 1
AES(S)(X, X/) — Vﬁ(g) - QG(G)[E(mZaO - al) _

Azag )
+2a2)} 2{4 2y +2 > Iog—|2m 0|[ (m“ag — ay)
20 (mtag — 2m?a; + a AR ML 20
AR ] R 224
S 4 2 (20)* (5 s 9 4
-m" —2m-a — & —M’ag — —M"a;
X(4 1 2) 2. 2. e\3n e pmA

15 A: @
Prtar) + - 2 | 31
3 2>+ :|+2n24m2} (31)
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This AP%®(x, x') contains all the terms that diverge when— 0 (like (o),
1/0,logo) plus the terms with a divergent first derivative when— O (like
0(c), 06(c), o logo) plus some convergent terms when— 0 (like 1, o, 2).

In this way we arrive at the first important conclusion of this sectiime poles
of I'(j — %) from which the three coefficients,as, and & originate correspond
to the divergent terms or the terms with divergent derivative when 0. There
also are convergent terms AES(S)(X, x') but they are physically irrelevant as we
will soon see. The regular part af2S(x, x’) reads

(20)°
22.42.

Az [ (20)2 o A%
2 PR —_— S —
xlot 4 2712[22.42.6( 2 )] 21

az ay 20 (az &
B A L\ L2 (B 32
><[(4m4+8m6+ ) 22-4<m2+m4+ )+“ (32)

and contains terms that are convergent and with first derivative also convergent
wheno — 0.

Then we can define the “Hadamard regularization” as the prescription in
that the singular part oAPS(x, x) contains all the terms dlvergent or with first
derivative divergent whea — 0 while the regular part oa'&DSr (x, x’) contains
the terms that are convergent and with convergent first denvatlve when0. At
first sight the dimensional regularization and the Hadamard regularization do not

coincide, since mDS ®(x, x/) there are convergent terms with all their derivatives,
namely those like lq ando?. Nevertheless the difference is physically irrelevant
since these terms are multiplied by termgx, X'), a1(x, x’), andayx(x, x’) that
wheno — 0 have the limits

AES“’(x,x/):—ge(o)[ 5(~6) + - ] { '09—I2m0|

lim a(x,x) =a(), i=123 (33)

From Eg. (23) we see that these terms are proportional to the linear combinations
of I, R, R?, R,,R*, Ry,sR*7%, andOR, contained among the terms of the
gravitational Lagrangian. Therefore the terms we are discussing can be absorbed in
the gravitational acnoS(, supplemented by thid terms. Then, in order to unify the

two regulanzatlonsz,\F r)(x, x") must be difined modulo some terms with arbitrary
coefficients corresponding to the undefined terms,lando?2. In the effective
Lagrangian these terms will produce finite terms that can be added® «, 8,

andy (Birrell and Davies, 1982, Eq. (6.60)). The coefficients of these terms will
be called, g, a, b, andc. Dropping these terms for the moment, we can compute
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the regular Lagrangian corresponding¥8>®(x, x’) that in the coincidence limit
reads

. 1

1Az | ag a
Im ADS“) = lim — 4+ — 4. 34
! (%, x) x|—>x 472 | Am? + 8ms¢ + (34)

Thenas lily_.x A = 1 (De Witt, 1964, Eq. (17.86)) we have
im ADSO(y xy— |3 .

Jim, A~ 06 x) = 4712{4m4 tame T } (35)

We may now add the arbitrary coefficients and obtain

DS() _ &,

X'L”l Af = n )2{4Im +ga1+ + e + } (36)

wherel andg are the already defind arbitrary coefficients and thepd® andc
correcponding te, 8, andy are hidden ire,. Using Eq. (18) we obtaifi

LO(x) = o [Zlm + gntay + a, logm? +3+ ] (37)

which turns out to be equal to Eq. (26) (except that in the quoted equation the first
three terms are missing, since they are absorbe®j supplemented by theH”
terms), showing the coincidence of the two methods.

Therefore the subtractéﬁir) reads

4 R 1gnPR
N = / m !
(-9)* 6072(3 t 1672 T 1672G, | 6 3202

logm?2a: a
gm-a, 3 +i|

3272 | 32722 (38)
where the quantities-2Aq/1672Go + m*l /1672 and 1/167°G + (1/6)(gm?/
3272) must be determined by physical measurements (ag,tAeandy that are
hidden inay).

So using Hadamard regularization and the subtraction recipe the result is,
somehow, simpler since Eqgs. (24) and (25) just read

1 1
Gphys = Go/l + éGong, Aphys = Ao — EGOmZI (39)

so the bare constants are finite and would coincide, from the very beginning, with
the physical ones for the choite= g = 0 of the arbitrary coefficientsandg. Thus
using Hadamard regularization and the subtraction recige,ust remove®

2 2
1811 the first two terms, instead g, we use— [y and in the third term- /i, because they work
in these terms aﬁfﬁ in the rest of the terms (see Birrell and Davies, 1982, p. 157).
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from A and useA®” we have obtained the same result as in Section 2.1: all the
infinities are removed and substituted by finite quantities. Thus the “subtraction
recipe” works as the standard renormalization. The new recipe just consists in
the elimination of the singular (or with singular first derivative) short distance
components of the two-point functiakPS(x, x’), the only relevant truncated two-
point function in this theory. If we would haveia* interaction, more truncated
point functions must be subtracted, as we will see in the next example.

3. FIRST METHOD: A¢* THEORY IN THE LOWEST ORDER

In this section we will use the subtraction method in #he theory with
Lagrangiaf®

(331) L= —%(au¢)2 - %m2¢2 - %w“ +A (40)

Dimensional regularization and minimal subtraction will be done following Brown
(1992).

It must be clear that, as we will isolate the divergent parts and then subtract
them, the theory will necessarily turn outto be finite. Thus our only aim, in Sections
3, 4, and 5 is to detect the local divergencies and to compare our method with the
usual one to see how the results are obtained and to show that they are similar, (soin
each paragraph “i” we will see how we can find the singular and regular parts of the
objects appearing in the theory, in “ii” we will review the usual renormalization but
by using our notation, and in “iii” we will see how the subtraction recipe handles
the divergence problem and then we will compare the results).

3.1. Singular and Regular Parts of Ag(0) and Mass Renormalization

i. From Eqg. (1) we know thatg(x) is one of the main characters of the
play. It is divergent whemx — 0. So we will define the singular and the
regular parts ofAg(0), first using dimensional diagonalization and then
the Hadamard on®. In n dimensions it reads as (just computing the

191n Sections 3, 4, and 5 the numbers before the equations correspond to Brown (1992) (we use the
formalism and methods of this book as a sample of the standard theory). Moreover, comparing
Egs. (14) with (40) we see that there is a change of convention in the sign of the norm, so in the
following sections we change this convention in order that our equations would coincide with those
of the corresponding references. Also, in order to comply with Brown (1992) we will sometimes use
A (x) and sometimed g (X).

20|n both cases the singular component will have the fosm geometrical objed(in this case invariant
under a Lorentz transformation). Of course there are many possible subtractions, as in the previous
section. In section 3.2 we will use the minimal one as in Brown (1992). In section 3.3 we will use
the Hadamard one and we will show the finite difference between the two choices.
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ii. Letus now see hova

tadpole graph and neglecting nonconnected graphs that will be taken into
account in Section 3.2 and 4.2)

. , m? m? \2? n
(41)

whereu is an arbitrary mass. We can now difiméé)(O), the divergent
component ofAg(0). As thel' (1 — J) behaves as

n 2
F(l——)%—+y (42)
whenn — 4, (wherey = 72/12 is the Euler-Mascheroni constant), using

the minimal subtraction we find the singular partof (0):

1
(4 )2n

In this way we have detected the local divergency. So we reach a decom-
position (as (6) and (7))

Ae(0) = AD(0) + AP(0)

(S)( 0)=

(43)

m? m? \?2 7?21 n 2 om? 1
S . L N
(4m)?2 | \ b pu? 2 2 n—4 (4r)2n—-4

(44)

Then,

12
0= g | () 7705) | @

Precisely whem — 4 we have

2
AD©) = ( 4 e [Iog( mﬂ ) Yy - 1} (46)

wherey is the arbitrar X mass, so essentlaﬂg)(O) has an arbitrary value.

(O) is related with the mass renormalization. To
correct the dlvergency afho(X)po(x’)) we must correct the divergency of
its Fourier transform:

1

(4.3.2) Go(p) = P2+ m2 + Zo(p)

(47)
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The computation of the tadpole graph (in the firsirder) yields
@37) () = J10Ac(0) (49)

(1)
0

that makes the ternrm% + X5”(p) divergent. Precisely,

1
mg + 257(p) = M + S20[AL(0) + AP(0)] (49)

In usual renormalization we consider that the (bare) mads divergent.
Then to compensate this divergency we define a (dressed)imassh
that

Mg+ =§(p) = m? + =V(p) (50)
where both terms in the r.h.s. are finite, precisely,
A
mg = m? [1 —~ ?OA(ES)(O)] (51)
and
1
=0(p) = 510AE(0) (52)
Then the physical mass is
(4.3.15) m3, o= m*+ =B(p) (53)

wheremgnys is a constant while®(p) andm? are finite functions of
(cf. Eq. (46)), satisfying the renormalization group equations.

iii. Using the subtraction recipe we would directly say that in Eq. (49), in

reality A(ES)(O) = 0 and we will obtain

M2y = M3 + :—ZL/\OA(,?(O) (54)
which is equivalent to (53) and where
a. mg plays the role ofn; it is therefore finite.
b. SinceAg)(O) is a function ofu, my must also be a function qf in
such a way th:’:\llnf)hyS turns out to be a constant. Then§ satisfies the
same renormalization group equation asrtifeof Eq. (53).

This will be a common feature of subtraction recipe for all physical
constantsthere is no need to introduce a dressed quantity since the bare
quantity takes its role, then the bare quantity becomes a functign of
satisfying the renormalization group equations.
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In fact, in the usual theory we obtain the renormalization group equations
from

(5.4.1) Z[mo, Ao, ...] = Z[, M, A,...] = const

wheremy, Ag, ... are constants ana, A, . . . are finite functions ofx. In the new
approach this equation is changed by

Z[Mphys: Aphys - - -] = Z[p, Mg, Ao, ...] = const

wheremphys, Aphys - . . are constants amto, Ao, . . . are functions ofx. These two
equations are formally equal, so we will obtain the same renormalization group
equation in both theories.

3.2. The Cosmological Constant and the Hadamard Regularization
for Ag(0) inthe CaseA =0

i. Letus begin making an identificatioﬂ_g)(O) in flat space—time can also
be obtained in the case= 4 (but using Hadamard subtraction and not
minimal subtraction) making all the curvatures zero in Eq. (34), (namely
making all thea zero butayg = 1) and multiplying by—i (sinceAg —

i Ag, Brown, 1992, p. 194). So we obtain (when= 0)

4lm?
(4r)?

AD©) = lim AD(x, x) = (55)
X,X'—0

so essentially in this case lim o Ag)(x, x') is just an arbitrary finite

constant as in the case of (46). For the case 0 some corrections will

appear in Eq. (34) (Birrell and Davies, 1982, p. 301) but the r.h.s. of

Eq. (55) will always be an arbitrary constant. The origin of this ambi-

guity is the usual one: an infinite quantity can only be considered mod-

ulo a finite undefined constant. So the arbitrary singularity coefficient

liMy x—0 A(Er)(x, x'), defined whem = 4, plays the same role thatin

the casen £ 4. Both parameters are related, whiega: 0, by:

m2

4 =log +y -1 (56)
<4M2)

Thus, this preliminary consideration leads us to suppose that there must

be something like a cosmological constantigt* theory also. In fact,

in traditional quantum field theory the additional infinite term that ap-

pears, due to the addition of infinite ground energy tewyi& can be

considered as an unrenormalizable cosmological constant. This term is

eliminated using normal ordering. But this renormalization is better un-

derstood introducing the just-mentioned cosmological constant (Brown,
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1992, Section 4.2) that must be renormalized. Using our equation we can
define a cosmological constantfor this flat space—time theory, if we
just add to the usual Lagrangian a teras we have done in Eq. (40).
This term reads (see (38) and (56) in the case 4)

m* m* m?
A= 16712| = A(an)? [Iog (471“2) +y - 1} (57)

ii. Letus see how the renormalization method introduces the cosmological

constant. Wheh = 0the vacuum-to-vacuum expectation (corresponding
to the vacuum one-loop graph) reads

(4.21) (0+|0-) =/[d¢] exp{—/(dEX)

1 1
x [ 3007 + 5mée - nol} (60
Thus
1
(422) — (0+]0-) = 2/(olgx) (04](x)?|0—)

1
~50+10-) [ (@) 8e0) (59
and
(4.24) (0+|0-) = exp[—% /dmzf (dEx) AE(O)] (60)
But if £ is the cosmological energy density of the universe we also have
(4.29) (0+|0-) = exp[—f dgx E} (61)
So
1 2
= E/dm AE(O)—AO (62)

whereA can be considered an integration constant. Then from Eq. (44)
we have

1 1
=3 / dm? AD(0) + 5 / dm? AD(0) — Ao (63)

so we can consider that, is infinite in such a way as to cancel the infinite
in A®(0), namely,

1 1my 1
Ao== | dm? AD©0) - p*"A =2 2 —u* A (64
0 2/ m” Ag(0) — p 2@nin_a M (64)
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whereA is the finite cosmological constant. So finally
1
SZE/mMAQ@+MWM, (65)

and whem — 4 we have

1 m 2 3
@zm)5=ﬂgﬁbmi%g+y—ﬂ—A (66)

wheref isfinite and itis not afunction gf but A is a function of this mass.
Using the Hadamard method of point i we can directly see these facts
using Eg. (57), since thg variation is cancelled in (66). It remains a
finite constant, which is unimportant since we can add an arbitrary con-
stantto the Lagrangian (40). As usual, the condifioa const. originates
the renormalization group equation far

ii. Directly from (62) using subtraction recipe we would have

1
5=§/mﬁAﬂm—M (67)

that forn — 4 gives

1 mt m?

namely (66) with the finite merely unimportant differencef =
—m*/16(472), as already discussed, ang playing the role ofA. Now
both terms in the r.h.s. are finite and functiongwofvhile £ = Epnysis a
physical constant, yielding the renormalization group equationfoas
in the usual renormalization case.

From now on we will only use the dimensional regularization since the sin-
gular structure of the higher point function is not as well-studied as the one of the
two-point function.

4. FIRST METHOD: A¢* THEORY AT SECOND
PERTURBATION ORDER

4.1. Singular and Regular Parts of A (2)]@? and the Coupling
Constant Renormalization

i. Computing the fish graph we found that the scattering amplifudeads

BSM)T=M+%%W@+F®+F@] (69)
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wherelg is the coupling constant aisct, andu the Mandelstam variables;
F read$t

(3.5.13) |:(—|32)=—iE / (d*2) €P%(0|T¢*(0)p*(2)I0)  (70)

(as in Brown (1992) we have omitted the disconnected graphs that were
taken into account in Section 3.2, and we will again consider in 4.2);
(0| T ¢?(0)¢?(2)|0) is the four-point function divergent coincidence limit
mentioned in Section 1.1 that we must study and subtract, precisely,

(35.9) (0]T¢*(0)p*(2)|0) = —2A((2)? (71)

So we see that the coincidence limit is the (undefined) produst-¢f)
by itself. Using dimensional regularization, as explained in Section 1.1,
we define

(I T$%(0)?*(2)[0) = —2A¢ () (72)
We will decompose this quantity as
MA@ = Ap@ DO + Ar @0 (73)
according to the prescription (9)—(10). Then we will obtain the regular
FO(—P?) as
FO(-P?) =i / (d*2) €P?AR(2)@20 (74)

And, if we use thisF ") instead ofF in Eq. (69) the physical will turn
out finite. We can directly make all the procedurefe- P?), the Fourier
transform ofAr(2)2. Using dimensional regularization we obtain

(35.30) F(~P?) = —(‘Z:r;r (2- g) /olda

[m2+a(1—a)P2]%‘2
x 2

y— (75)

2 Really Eq. (3.5.13) in Brown (1992) reads
(35.13) F(-P) =i /(d“z) ePZAE(2)?

but we must remember thatg (z) is a singular function (something worse than a distribution) so
Af(2)? is a meaningless expression unless a multiplication procedure would be prescribed (which is
done in Eq. (3.5.14) of Brown, 1992). Moreover the decomposition (3.2.19), of the same reference,
that is the base of the equation above, cannot be used when two points coincide, since this decompo-
sition is inspired in the case when these two points are far apart, as in the definition of the truncated
functions.
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This equation can be considered as a way to obtain the squai®?,
i.e., to make this square when it is possilie£ 4) and then take the limit
n — oco. Whenn — 4 itis

(3531) I (2- g) N ?Zn + f(n) (76)

where f (n) is a regular function such that lim4 f(n) = —y. So, we
can find the Fourier transform of the decomposition (73):

F(=P?) = u"[FO(-P%) + FO(-P?)] (77)

where the factoru"~* has been displayed to make®(—P?) and
F(—P?) dimensional and where

O p2y_ 1L 2 ! 1 2
FREPY = (4n)2(4—n)/o “ a7
and
1 1 n
O(_p2) — _ _n
(35.33) FO(—P?) = (4n)2/0 da{F(Z 2)
12
x [m2+1(,1/;a)|32} +n34} (79)

Making now the inverse Fourier transformation of Eg. (78) we have that

1 2
W nf45(2) (80)

which, in fact, has the form announced in Eq. (9). It is singular when
z = 0 and it shows that only the regular part is relevant whefn0. So

we have detected the local divergency. Again, the nonunigueness of the
result is shown by the presencesoin Eq. (77).

i AF(Z)(d)Z(S) —

. The usual renormalization procedure would be to put the singular and

regular parts in (69) to obtain
n—4 n—4
2 3 M 2
A
0(471)2n—4Jr 2 7

x [FO(s) + FO(t) + FO(u)] (81)

(3537) T =ho+1

where the physical quantify must be finite angi-independent. This is
achieved by introducing a renormalizeduch that

a3 1
(35.38) o= s A(l (471)2”_4) (82)
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so thatig turns out to be infinite and finite. Then
1
(3548) T =1+ EA"’[F“’(s) +FOM+FOw)]  (83)

where all the magnitudes are finite. &ds u-independent we can obtain
the renormalization group equation for

iii. According to the subtraction method, we must make zAggz)@2©
or F®(—P?) and then we obtain the following finite physical value
of T.

(35.48) T =g+ %xé[F(r)(s) +FO®+FO1)]  (84)

whereig is a finite quantity.
Making the limitn — 4 it turns out that

O L mZeV> _Am?
(3.5.66) FY/(s) = an)? {Iog <47m2 +,4/1 e
(85)

We see that with the substitutiohy <> A, Egs. (83) and (84) are the
same. In the case of the subtraction methgds a finite u function, and as
T is u-independent we can obtain the same renormalization group equation as
above.

4.2. The Cosmological Corrected Constant and4Ag(0)]?

i. In the previous section we have neglected nonconnected terms, e.g. in
Eqg. (48), because the mass term was a consequence of the equation

1
(438) GPx—x) = ~3108e(0) [ (2R) Ac(x— )Aelx —
(86)
that actually reads

Gél)(X -X) = —%ko/ (dE)?) {AE(O)AE(X — X)Ag(X — X)

+ 5B AP @)
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Moreover, the cosmological constant is originated in the equation

(33.9) (0, ]0.) = / [d¢] exp{— / Lo(dgx)}
xexp{—%/qf‘ (dEX)}

A
= (0, 10)9 - 4—‘!’<o+|f¢4 (d2X)0)® 4.

= (0,100 - 30 / (d2%) [Ae(0)1(04 | 0-)

“ (88)

which corresponds to Eq. (60) with an extra tet@n. | 0_)© corresponds
to the case., = 0 and the second term to the nonconnected graphs (the
“eight” and the “square of the figure eight,” etc.). In all these expressions
[AE(0)]? appears and it must be substituted By:[0)")]? according to
the subtraction recipe. Asg(0) is not a distribution, but just the divergent
quantity (41), we must only substitute it Wé)(O), using decomposition
(6) and (7), and making Egs. (87) and (88) finite.

ii. Letus now go to the renormalization method: At order two we have

m_”ir(l_ﬂ)_} e Mt 1
(4m)z n 2

2 @nyn—a
n 2
1 4 m? m? \2°1 n 1
= 0 r(1-2)—
T ey [(4;”3 )

Ll m 1 o1
’ (4n)2n—4

(4.45) &=

2" (4ryn—4 ) ~ho (89

It can be checked that the first two lines of this equation are finite when
n — 4. So we must define a renormalized cosmological congtanich

that
1 m 1 A 1
4.46) Ao=p"t| 1- A| (90
(44.6) Ao=p |:2(47r)2n—4< (4;1)2‘n-4>Jr } 0)
Then we have the final finite expression
m" 1 n 1m 1
= n—F - =)~ I"|74_ - n74A
(@n)i n (t-3) P

n 2
1, ,amt m \* 1 n 1
= Y Zr(a-2)- — 01
T any [(47”@ 2 ( 2) noal OV
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which is finite whem — 4. In fact, whem. = 0, we have that

m" 1 n 1 m 1
= Tr(1-2)—p"4z 0 = nhp 92
(4)z n ( 2) 2(4n)2n—4 (©2)

which is a finite quantity, as we have proved in Section 3.2 (it corresponds
to (0, | 0_)©@), while

n_2
m3 \? "1 n 1
[(471,u2) 2F (1_ 2)_ n—4:| (93)
is finite for (45), so the r.h.s. of Eq. (91) is finite. Whenr- 4 we find
~om o m? N 3 A m*
= 2@y | N az2) T T 2| Ty
m? 37°
X [Iog (471#2) +y - E} —A (94)

The terms of the r.h.s. age functions that originate the renormalization
group equation as usual.

iii. Using directly the subtraction method in Eq. (89) we would have when

n— 4:

_om o m? N . +A m*
= 2@z |\ arz) Y 8 (4n)?

m? 2
X [Iog <4JTM2) +y - 2} — Ao (95)

with all terms finite and\ ¢ a function ofu as usual, which is equal to (94)
with the exception of the already known unimportant constant. For both
methods the renormalization group equation can be obtained prescribing
that& would not be a function oft.

4.3. The [Ag(2)] @3 and the Wave Function Renormalization

i. In reality mass renormalization of Section 3.1 is based in the Green

function:
@34) G —x) =~ 50 [ (E9) @I (96)
that can be written as

(435) Gyl(x —x) = —%AOAE(O) / (dEX) Ae(x — ) AE(X - X)
' (97)
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In the next order we must compute
1/ X
) ’ 0
(452) Gyl(x—x)= 5(——4!>/(dgy) (diz)

< ()X ) (V) ()@ (98)

Computing this Green function, as we have done with the previous one,

we find

a. Vacuumdisconnected graphghey are the “eight” and the “square
eight,” etc. which are removed by ordinary renormalization of the
cosmological constant or by the corresponding subtraction that makes
this constantfinite but undefined, as shown in Egs. (57) or (95), (Brown,
1992, pp. 205-206).

b. Disconnectedtivo legs graphit is the product of the “tadpole” by the
“eight.” Both graphs have already been considered either by renormal-
ization or subtraction.

c. Connectedwo legs graphsNamely:

c:. The “double scoop” or “double bubble” graph, with an integral

1
453) z&Yp) = —Z,\g / (d2y) Ae(y)?Ae(0)  (99)

(which really is not a function gp). It has two factors.

— Ag(0), which was considered in Section 3.1 and made finite by
both recipes.

—Age(y)? = Ae(y)@?, which was considered in Section 4.1, since
the integralin Eq. (99) is justthe integral in Eq. (74) with= 0,
which also was made finite by both recipes. Yturns out
to be finite either way. Finally let us observe thatziéz'l) the
typical expressionj®(0)1#[w®(2)]*, of Section 1.1, appears
for the first time in its complete version.

Co. The “setting sun” graph, which is a function pf

@s4) sEAp) = - [ (@) ace™  (@00)

To deal with this integral we must first compu@”s(x) multiplying
Ag(x) three times, then make its dimensional regularization, and finally
its Fourier transforrm(gﬁ(p). We obtain

2 2 \ N4
4537 =570 = ¢ (g ) ¥ (a2
T(-1°r@-n)

rg-9

(101)
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As whenn — 4

r-1°r@-n 1 1
TEEE T (102)
then
2
@2 _ L[ A > 1
[P = 12<(4n)2) i (103)
Then, we conclude that:
1/1
(d)3(s) _ = = 2 AipX n
Ae “*‘2< )(%V i e
1 1 1
=_—_ v? 104
2@men—a’ °® (104)

which, in fact, has the form announced in Eq. (9). It is local, since it is
singular wherz = 0 and vanishing forz # 0. We have detected another
local singularity. In the finite limit whem — 4 we obtain

(4.5.38) )3(2'2)(p)=—i * 2p2 log P’ + const) (105)
e 0 12| (47)? 47t 2 '

Subtracting all singularities the propagatég‘)(x — Xx’) turns out to be
finite to the second order. But, of course, an ambiguity appears in the
constant of Eq. (105) that must be fixed by a measurement.

ii. Inthe renormalization theory we must add all the results of the connected
graphs to obtain

2
(4.5.39) Go(p)—lzpz[l_liz[ » } L}erg

(47)2| n—4

+m2{(4:;)2 [ ! 4+f|n|te“ [(4)‘7)2}2

[ 2 11
X{m[m—4ﬁ+§m—®]

+ finite function of p2} (106)

To eliminate the infinities via renormalization a renormaliZ(g)
is defined as

(4.5.40) Go(p) = Z2G(p) (107)
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where

17 2 1?2 1
(4.5.41) z§=1+1—2[w} — (108)

then up to the ordex? we have

(45.42) G(p) = p?>+mi+ mz{ (42 7 [n%a, + ﬁnite]}

B [(42)2]2{m2[(n—24)2

5 1 i
+ 1 -2 + flnlte] } (109)

and the renormalized mass reads

! LT
(45.43) mj = mz{l T @rn-4 [(471)2}

2 5 1
X [(n—4)2+1_2(n—4)“ (110)

Then
G(p)t = p? + m? + finite(p?) (111)

All terms are finite and(p)~%, m?, are finitef:) are . functions; p? is

the physical constant quantity that originates the renormalization group.
The renormalization of Egs. (107) and (108) is usually considered as a
wave function renormalization:

(4.5.46) ¢o(X) = z29(X) (112)

whereg(x) is the renormalized field.

iii. Using the subtraction recipe Eq. (111) reads

G(p)t = p? + mZ + finite(p?) (113)

since all the infinities disappear from Egs. (109) and (110), but a finite
undeterminate constant remains that must be fixed by a measurement that
corresponds to one of the wave function renormalization. As umgal,

and finite(?) are . functions that originate the renormalization group.
There will be two equations: one for thg coefficients and one for the
remaining terms. Moreover, from Eqg. (108) with no infinity we have
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z1 = 1 and there is no need of the wave function renormaliz&fidrhen
using our recipe, we get the same result.

5. FIRST METHOD: A\¢* THEORY AT ANY ORDER;
MORE GENERAL \¢' THEORIES; SPECULATIONS
ON NON-RENORMALIZABLE THEORIES

We can now follow a well-known path. For thep* theory the superficial
divergence is

(5221) D=4-N (114)

whereN is the number of external legs of the graph. Then, only graphs\vith 2

andN = 4 have basic divergencies. Moreover the covergence of all the graphs to
can be reduced to prove the convergence of the primitive divergent graph (Ramond,
1981, p. 144), namely the tadpole and the fish graphs, the double scoop graph, and
the setting sun graph (and the nonconnected graphs), which were studied in the
previous sections. These graphs are finite under ordinary renormalization (or if the
subtraction recipe is used). So, repeating these calculations to any order all graphs
of the renormalized theory are finite and the theory turns out to be finite to all
orders (Dyson, 1949; t'Hooft and Veltman, 1972%* theory can be considered

as renormalizable since it has a finite number of primitive divergent graphs and
therefore a finite number of relevant singular point functions, namely two. So we
now know thatusing subtraction method the theory is directly finite to any arder
The only difference with the counterterms formalism is that now the undetermined
finite coefficients are located at the infinite local singularities. In the renormalizable
case these coefficients combine among themselves in such a way so as to produce
a finite number of undetermined quantities that are computed by a finite number
of measurements, as in the usual theory.

To complete the panorama we can study the problem in more general scalar
field theories. Theories with interactiong' with | > 4 turn out to be nonrenor-
malizable because they have an infinite number of primitive divergent graphs and
therefore an infinite number of relevant singular point functions that cannot be
compensated with the finite number of terms of the bare Lagrangian. But the sub-
traction recipe can anyhow be used, making all these singular functions finite, and
these theories would become also finBe. all theories can be made finite if we
use the subtraction recipe

22This fact must be most welcome since both the “bare” and “renormalized” fields now satisfy
the same equal time commutation relations. Moreover we can introduce aZintteoefficient
before p? if we would like to have a finite wave function renormalization as in Eq. (6.4.18) (see
Brown, 1992).
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In fact, let us consider what we know about this kind of theories:

i. To make the theory finite we must make finite (by renormalization or
subtraction) all the superficially divergent subgrapbBs> 0). The mass
dimension in each term is the superficial divergency.

ii. The divergent terms are polynomials of finite order in the external mo-
mentum. Using dimensional regularization with minimal subtraction the
coefficients of these polynomials are found to contain positive integer pow-
ers of the parameters of the theory multiplied by poles in4 (Brown,
1992, p. 235% So the typicabdivergentterm reads

makﬁ... 51 5o

P(PL P2 PN) = D Al s gy PEPE P (115)
that under a Fourier transformﬁ)(xl,xz,_...,xN) ~ [dp fdp---
SdpnP(p1, P2, ..., pn)eXiPremXePz ... e=*nPv - corresponds to the

local singularity:

W (X1, Xa, ..., Xn) > A Ay
X VO§(x)V328(xp) - - - VONS(xn)  (116)

as in Eqg. (104), i.e., singularities of the (6) type. All the singularities
V9 §(x) are well-defined distributions in variabie (there are no mean-
ingless expressions d€0) f0°° dw that we will consider and eliminate in
the next section) multiplied by infinite poleg(h — 4)”.

So let us compare the two methods:

i. Renormalization: In this case the divergent (115) terms must be compen-
sated by counterterms like

smesab ...
(n—4y
wherex # o’ andg # g/, bute + 8 = o’ + B’ in such away so asto have
the same dimension (or the same superficial divergé)cé is clear that
in general such counter terms must be infinite and will be only finite in par-
ticular cases (renormalizable theories). Moreover non-renormalizable the-

ories are considered noncontrollable, since they must have an infinite num-
ber of counter terms, implying new interaction terms of growing power.

PP Py (117)

23There are also non polynomial divergencies. But they can be eliminated, in the computation &f
functions, if we begin considering the most elementary subgraphs and make minimal subtraction in
these subgraphs, to proceed recursively doing the same in more complex subgraphs and we finish
subtracting the overall divergency of the graph.
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ii. Divergencies will disappear using the subtraction recipe and the theory
will turn out finite anyhow. In fact, as in our method the Lagrangian re-
mains untouched, and we can make the theory finite simply subtracting
the divergent terms. Then all thg > 0 terms will disappear and
wﬁ,)(xl, X2, ..., Xn) Will be awell-defined functiord* As from the general
formalism of quantum theory (Haag, 1993) we are used to deal with a host
of infinite divergent point function®, to deal with a similar host of finite
point functions, obtained via the subtraction recipe, it cannot be a major
theoretical problem. So under our method both renormalizable and non-
renormalizable theories are finite. Nevertheless, in renormalizable theories
the ambiguous terms are combined in such a way that the unknown param-
eters of the theory can be computed with a finite number of physical data,
while in the case of nonrenormalizable theories this number is inffnite.

Then using our method, non-renormalizable theories most likely make some
sense and, if they have small coupling constants, probably would yield good results,
using a few terms of the perturbation expansion and a few physical data, but of
course we do not know yet if they have any physical relevance. Moreover, in recent
years it has become increasingly apparent that the usual renormalization is not a
fundamental physical requirement (Weinberg, 1995, Vol. 1, p. 518). We stop our
speculation here, since this will be the subject of forthcoming researches.

6. SECOND METHOD

In this section we will try to find a theoretical justification for the subtrac-
tion method, following the authors’ of the following references: Bogolyudio.
(1975), Haag (1993), Segal (1947, 1969), and van Hove (1955, 1956, 1957a,b,
1959). We will also find new potentially dangerous divergencies hidden in the
formalism, which will also be eliminated. The quoted authors consider that the
first object that must be taken into account in quantum field theory is the set of
observable® that we will use (belonging to the space of the relevant observables
O). Then the states can be considered as the functionals over these observables
yielding the mean valueg (] O). If the spectra of the observables of the problem
are discrete we havey (| O) = Tr(pO). If one or many of these spectra are con-
tinuous the problem is more difficult because the last symbol is ill-defined. This

24|n reality we also have an infinite set of counter terms, but not in the Lagrangian; they are the singular
terms of the point functions that must be subtracted from these functions to obtain the regular terms
so that they are precisely located in the place where they are needed.

25| jke those listed in footnote 2.

26For example, in the.g* theory, the renormalization group shows that all the residues of the poles
depend on those of the first-order poles (Brown, 1992, p. 241). Namely all the ambiguities cor-
responding to higher divergencies depend on the first-order ambiguities, and therefore all these
ambiguities can be computed with just some measurements. In the giaplecake there is no such
miracle and we must deal with infinite ambiguities.
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happens when, the energy spectrum is continuous. In Laura and Castagnino (1997,
1998) we solve this problem (based on the mathematical structure introduced in
Antoniou et al, 1997), finding good results for many physical problems. In the
present paper we deal with short distance divergences, related with the position
operators, which also have a continuous spectrum. So we will try to adapt the
method of Laura and Castagnino (1997, 1998) to this new problem. But first let us
review the formalism of this paper.

6.1. van Hove Formalism

Let us consider a system with a Hamiltonidrwith continuous energy spec-
trum 0 < w < +4o0. In the simple case at least some generalized observables read

0= // dodw' [0,8(w — @) + Opuw ]|w) (@] (118)

whereQ,, andO,,,, are regular functions (with properties we will discuss below).
These observables are contained in a sgac&he introduction of distributions
like §(w — ') is necessary because the “singular te@s(w — ') appears in
observables that cannot be left outside the sgacdke the identity operator,

the Hamiltonian operator, or the operators that commute with the Hamiltonian.
So, even in this simple case the observables coitéimctions (while in more
elaborate cases they will also contain other kind of distributions). Symmetrically
a generalized state reads

p= / / doo o [0u3(@ — &) + pour]l) (@ (119)

wherep,, andp,,., also are regular functions (with properties to be defined). These
states are contained in a convex set of st&tdde introduction of distributions like
8(w — ') is also necessary in this case because the “singular tegi{io — ")
appears in generalized states that cannot be left outside tlielget the equilib-
rium state?” With this mathematical structure it is impossible to calculate some-
thing like Tr(o O) because the meaningless ter8(8) f0°° dw appearThis is the
main problem(if O,, # 0 and p,, # 0). Let us keep in mind that with the old phi-
losophy we are just considering the mean valu@ ) as a simplénner product
(and in doing so we have the problemsg0) f0°° dw).

The problemis solved if we consider the characteristic algebra of the operators
A (seethe complete version in Castagnino and ®edp2000) containing the space
of the self-adjoint observabless, which contain the minimal subalgehrkof the
observables that commute with the Hamiltonkarfthat we can consider to be the
typical “diagonal” operators). Then we have

AcAsc A (120)

27ysually this state is not considered in the scattering theory. So it ispmiBntially dangerougor
more general theories.
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Now we can make the quotient

A

Z = Vg (121)
where),q would represent the vector space of equivalent classes of operators that
do not commute withH (the “nondiagonal operators”). These equivalence classes

read
[al=a+A, acA (122)
So we can decomposé as
A=A+ Vg (123)

(this decomposition corresponds to the one in Eg. (118). But neither of the two of
the last two equations is a direct sum, since we can add and subtract an arbitrary
a € A from each term of the r.h.s. of the last equation.

Atthis point we can ask ourselves which the measurement apparatuses are that
really matter in the case of decoherence under an evolatiéti. Certainly these
apparatuses are those that measure the observables that commuieanitithat
are contained itd. Therefore they correspond to diagonal matricé$w — w’).

The apparatuses that measure observables that do not commute (titat cor-
responds to matrices with off-diagonal terms) are containe,jn The terms
corresponding to the second kind of apparatuses (either in the observables or in
the corresponding states) must vanish when oo, so they must be endowed with
mathematical properties adequate for producing this limit. Riemann—Lebesgue the-
orem tells us that this fact take places if functiadbg, are regular (and also the
Pow» S€E below). So we define a subalgebradpthat can be called a van Hove
algebra, as:

An=A@V, c A (124)

where the vector spacdg is the space of observables wi@®), = 0 andO,,,, a
regular function. Now thep is a direct sum becausé containss(w — «') and

V; just regular functions, and a kernel cannot be bothand a regular func-

tion. Moreover, as our observables must be selfadjoint, the space of observables
must be

O=Ans=ADVsC As (125)

whereV;s contains only self-adjoint operator (namédy , = O,,,). Restriction

(125) is just the choice (coarse-graining) of the relevant measurement apparatuses
for our problem, those that measure the diagonal terndsand those that measure

the nondiagonal terms that vanish when> oo in Vis. MoreoverQ = Ayys is

dense inds (because any distribution can be approximated by regular functions)
and therefore essentially it is the minimal possible coarse-graining. Let us call
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|w) = |w){w| the vectors of the basis of and|w, o) = |w){«’| of those of)s.
Then a generic observable Gfreads

0= /da) O,|w) +f/ do do’ Oy |, @) (126)

which is a vector in the bas{$w), |w, ®")}, whereO,, andO,,, are regular func-
tions (with properties exactly described in Laura and Castagnino (1997, 1998) and
omitted here, as we will do with all the functions that will appear in this brief
review).

The states must be considered as linear functional over the §p&céthe
dual of space? (Bogolyubovet al, 1975; Segal, 1947, 1969; van Hove, 1955,
1956, 1957a,b, 1959):

O = Aps=A ® Vg C Ag (127)
Therefore the states read
o= / do p (] + / / 100 Ao pous (@, 0| (128)

wherep,, andp,,., are regular functions ar{w|, (v, ’'|} is the cobasis dfiw), |w,
")}. The set of these generalized states is the conveS set?’. Now the mean
value

(p | O) = /dwpwow+// dw do’ Powe Ovw (129)

is well-defined and yields reasonable physical results (Laura and Castagnino, 1997,
1998)%8 In the last equation terms Iiké(O)fOOO dw have disappearedhis is

the simple trick that allows us to deal with the singularities in a rigorous math-
ematical way and to obtain correct physical results in Laura and Castagnino
(1997, 1998) and Castagnino and Laura (200B¥sentially we have defined a
new observable spaa®@ that contains the observabl€} of Eq. (126) that are
adapted to solve our problem. In this way we have found a method to deal with
the singular terms containing Dirac’s deltas. We are now considering the mean
value (p | O) not as an inner product but as the actfonctional o acting on

the vectorO (and thes(0) f0°° dw have disappeared). Decoherence is a conse-
guence of Riemann—Lebesgue theorem in the time evolution of the last equation,
namely,

(,O(t) | O) = /d(,() Iowow + // do dw, eii(wiw,)tpu)w’ Ou)’w (130)

28Moreover, the introduction of the singular observables automatically yield the introduction of the
singular states (Laura and Castagnino, 1997, 1998).
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6.2. The Formalism in the Simplest Case

Let us now use the same technique to deal with the singularities of quantum
field theory. But first let us remember that in quantum field theory there coexists
at least two different mathematical structures:

— The abstract Hilbert spadg where the fieldp(x) is an operator and the
vacuum stat¢0) a vector. The multiplication in the characteristic algebra
A is the multiplication of these operators. This is not the place where
divergencies are produced. Therefore we will not modify this structure.

—The vector space of functionsi{N — oo) variables«, xo, ..., Xy Where
the functionsg(x1)¢(x2) - - - ¢(Xn) can be considered as the coordinates
of the vectors of a vector spagéin a basigxy, Xo, ..., Xn). Since we have
proved that really the “functionsd(x)¢(x2) - - - ¢(xn) are distributions
or worse, we will give to this space the mathematical structure that we
explained in the previous subsectitin.

The characteristic algebrai$=HQ HQ N.

Let us begin with the case of just two variables to see the analogy with the
previous section. Then, as the observables {ike)¢(x’) are distributions (or
worse) it is reasonable to consider that all the observables are siffguktrus
beginwith the simplest case i.e.: with just the singularity (80). Then our observables
would read (like in (118) or (80) with = x — X’):

OX / /
O=//dx dx [m(S(X—X)—FOXX} X, X) (131)

whereO, andOyy are regular functions. But if we continue the road of Egs. (118)
and (119) we will find the same problems as above. On the other hand using the
philosophy just explaine#, we can define the space of observables

O=Ans=A® Vs C As (132)

where A is now the space of th&(x — x’)-singularity with pole ¢ — 4)~* and
Vnsis the space of regular observables measured by physical appar@yses

29Mathematically speaking this would be the one of a “nuclear” spéceamely the generalization
of the ordinaryN-rank tensor space to the case whereNhadices are continuous. In the future we
will base an axiomatic quantum field theory using this mathematical structure.

30We may say that we are using the continuous spectrum of the position operator (Apamtio
1995a,b; Ganei-Alvarez and Gaioli, 1997), that isco < X < 400 and define the basig, x’) as
|x)(x|. Butthis is not necessary since we can directly say that the gpadeectors with coordinates
d(X)p(x’) has a basig, x').

31But now referred to the measurement apparatuses, i.e., those that measure xaxidtid now
take the role of variable.
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Oxx are regular function an@® = Avhsis dense inds. Then we may transform
the Eq. (131) to make it similar to (126), namely

o} :/dxn(ix4|x)+//dx dX Oyy|X, X) (133)

so now the observables are vectors of a spé&ce N ® H ® H of basis
{Ix), IX, X)}. Then the states of this system are just some linear functionals over
the space).

O =A,s=A®Vsc A (134)

For a moment let us postulate that the singularities in the states also d& bxist.
this perspective the state must be linear combinations in the Hasigx, x|}
(where{(x], (x, x|} is the cobasis of|x), |x, X')}), so they must read

p:depx(X|+f/dX dX pxx (X, X'| (135)

wherepx andpyy are regular functions. With these definitions the action of func-
tional (0| over the vectofO) reads

0
| O):/dxgx_jl—l—//dxd)(,oxxfox/x (136)

and it will be well-defined when = 4 only if the first term of the r.h.s. vanishes.

But this is precisely the case since, based in the arguments of Section 1.2, we know
that either the real physical observables must be suchQhat 0, namely they
cannot see the singularities of the states (really because they only are mathematical
artifacts, etc.) orox = 0 (namely the states cannot see the singularities of the
observables, etc.). Then eith®g = 0 or px = 0 and the last equation reads

(010)= [ [ dxx puxOus (137)

and therefore we have eliminated the singular tex®, /(n — 4) of Eq. (136),
which now has no physical effedh this way we can justify the elimination alf
singular terms as we have done w{B0) as we will seé&®

32This is not really the case as we will see in the next subsection.

330f course we can also directly say that the tefrix ox Ox/(n — 4) is unphysical. But there is a
difference between Eq. (129) and the last equation. In the former the singular observables see the
singular states and therefore it has two terms. In the latter there are either singular observables or
singular states and they have only one term. Therefore the two coarse-graining use in Sections 6.1
and 6.2 are different. This factis no surprising since the singular terms éire necessary in the case
of decoherence to represent the diagonal final state but these singular texjnaist disappear in
the case of quantum field theory since this is the way divergent poles disappear. The two different
coarse-grainings are introduced to explain two different observed physical facts.
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6.3. The Formalism in the General Case

To generalize this idea let us go back to Eq. (3). We know that the functional
Z[p] and its derivatives define the whole theory. Moreover, following the above
ideas it must be written &4:

Z[p] = expi(p | O) (138)
where

|0) = [¢(X1)¢(X2) - - - P(XN)) (139)
d(X1)p(X2) - - - p(xn) being the components of a vect®) e A= N QHQQH
for any N and

(ol = p(x1)p(X2) - - - p(Xn)I0) (O] (140)

where p| € A' = N ® H ® H.Remember that whatreally matters for our analy-
sis is that “functions®(X1)@(x2) - - - ¢(Xn) andp(X1) p(X2) - - - p(Xn) are in spaces

N andN” while the way to operate witl®) (0| over the fieldp(x) remains the usual
one since it takes place in spalde Moreover, these are the observables and states
that really matter since they defir p]. The observabl¢O) is the generalized
version of Eq. (133); thus

O = Z|:/-dX1/dX2~../dXN O)(<I;))<2~»»XN|X1’ X2,...,XN)
N

(ci\S)

ol
+ ) _/dxlfdxz-.-/de_i %IN,%,M,XL-..,XN—O}
I

N, o,
(141)

for all possibleN and all possible coincidence limits symbolizedibyAs before
we can define an observable space

O =Ans= A ® Vs C As (142)
where:
i. Thefirstterminther.h.s. of Eq. (141) belongs to the spagewith basis
{IX1, X2, ..., Xn)} and regular function®{), .

ii. Thesecondtermofther.h.s.ofEq.(141)belongstothe sﬁaﬂm algebra
of the singularities of Eq. (116) with badisN, «;, X1, X2, ..., Xn—i)} and
regular functionso,(j”‘;f)xpwi. Then the singular terms are like those of
Eq. (116).

34The next symbol contains a sum over the indibes- 0, 1, 2,. ..
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(p| is the generalized version of the statex;)p(x2) - - - p(Xn)[0)(0]. Then,
if we repeat the reasoning of Eq. (135), these generalized states would read

o= Z/dxl/dXZ"'/dXN Pﬁzz(z.‘.xN(Xl, X2, ...y XN|
N
+ Z fdx1fdx2"'/dXN—i pg\ii)‘(i(ZA“xNii(Niaiini XZ! --~!XN—i|
i

e (143)
As above we can defined the state space as
O =Ayps=A @V C Ag (144)
where

i. The first term of the r.h.s. of Eq. (143) belongs to the spggevith basis
{(X1, X2, . .., Xn|} and regular functiong(")

X1 X2 XN * R
ii. The second term of the r.h.s. of Eq. (143) belongs to the sphagith
. : (@i, )
basis{(N, «;, X1, X, ..., Xn_i |} and regular functmnpN'XlXZ___foi.
Then

(p10)= Z/dxl/dxzn ’ f dxy p>(<r1)X2'"XN O)((B(Z“'XN
N
+ Z / dx / P / Ay pﬁi@(?"xwfi Oﬁiiigmxmi (I’l - 4)70(i
[

N, o,
(145)
which is a mathematically well-defined object only wher> 4, if only the co-
ordinateso") andO{) do not vanish. But this is the case sirgither

X1X2++-XN X1 X2+ XN

i. the physical observables in reality read

o) :ZdeldeZ.../deog)Xz,__me, x2,...,xN)} (146)
N

since they have only the regular part (because they do not see the singu-
larities of the states, etc.) so they have no singular @)~ termsor
ii. the states in reality read

p:Z[/Xmfdxz--~/dXN P&?XZ.UXN(XL X2,--~,XN|i| (147)
N

since they have only the regular part (because they do not see the singu-
larities of the observables, etc.) so they have no singalar4)~* terms.
But here we have a better argument: they have only a regular part since
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the functionsp(x1)p(x2) ... p(Xn) Of EQ. (140)are usually considered
regular, with no singularity.

Therefore if we use the functional idea embodied in Eq. (145), or better
Eq. (140), and the regular state of Eq. (146) or regular observables in (147) we just
have

2ol =i Y [ dx [die [ ax Ol b, (148)
N

which is finite, and the same happens with th@, derivatives ofZ[p]. Thus

the theory is finiteSo the theory becomes finite just supposing that the physi-
cal observables are regular (namely, just using as observables the real physical
apparatuses in our laboratory that give finite measurement®r the functions
p(X1)p(X2) - - - p(Xn) are regular (vhich is the usual suppositiprand adopting the
functionalapproach based in the ideasBbgolyubovet al. (1975), Haag (1993),
Segal (1947, 1969), and van Hove (1955, 1956, 1957a,b, 1959). In this way the
subtraction method is justified. Instead if we use the naive usual formalism where
all the characters belong to Hilbert spaces and are multiplied using the ordinary
inner product Z[ p] will be singular and the theory must be renormalized.

7. CONCLUSION

Sometimes renormalization is considered asracle (Brown, 1992, p. 243;
Ramond, 1981, p. 172). In fact, there is an infinite bare maséwhich being
infinite can hardly be considered as “bare”), and an infinite counterterm; that plus
the bare mass gives the finite physical “dressed” nmaga/hich being finite is
less dressed than the bare one); there is an infinite bare coupling constant and a
counterterm such that the subtraction of all these infinities gives the right answer.
This is apure miraclé3®

Now let us consider the same phenomenon according to the ideas in this
paper: We have chosen the simplest Lorentz-invariant lagrangiaonstructed
using a scalar fileg, to base our theory. Itis too much to assume thabuld give
us the right answers both for long and short distances. In fact, it works remarkably
well for long distances but it behaves badly for short ones, since it produces short
distance singularities in the relevaxpoint functions. So let us eliminate these
singularities and we will obtain both the correct short and long distance behavior.
This is the best we can do with Lagrangiarand the best we have until more re-
fined Lagrangians will be invented (using perhaps superstrings, membranes, etc.).
Moreover, the singular structure is pointlike and a pure mathematical artifact, and
therefore undetectable by the measurement apparatuses, so it must be eliminated,
in some way or other. So there is no miracle in the finite nature of the theory

35The author himself confesses that it was really difficult to understand and to teach this miracle.
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and there is a logical explanation of what really is going on. All these facts are
embodied in the rigorous mathematical structure of Section 6.

Only aminor miracleremains. The numerical constant of some (renormal-
izable) models are determined by a finite number of measurements, while others
(unrenormalizable) need an infinite number. Really it is a very small miracle com-
pared with the former one. We are used to deal with systems that can be defined
with a finite number of parameters (e.g., mechanical systems) while others have
an infinite number (e.g., the initial conditions of classical electromagnetic fields or
mechanical systems with an infinite number of parameters like fluid with variable
density or viscosity). Then what really remains is a very big practical problem:
how to work and solve quantum field systems similar to the second3kiide
do not propose a solution but we believe that we have thrown light upon the real
nature of the problem.
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