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The relation between renormalization and short distance singular divergencies in quan-
tum field theory is studied. As a consequence a finite theory is presented. It is shown
that these divergencies originate from the multiplication of distributions (and worse-
defined mathematical objects). Some of them are eliminated when the multiplication is
defined based on dimensional regularization, while others disappear when the states are
considered as functionals over the observables space. Nonrenormalizable theories turn
to be finite, but anyhow they are endowed with infinite arbitrary constants.

1. INTRODUCTION

Quantum field theory can be reduced to the knowledge of Wightman functions
(or T-ordered Feynman functions, retarded functions, or euclidean functions, etc.)
(Haag, 1993; Roman, 1969). These functions are short distance singular mathe-
matical objects (i.e. they diverge in the so-called “coincidence limits,” that is, when
some of their variables coincide); for example, the symmetric part of the two-point
functions has a Hadamard singularity, precisely

w(2)(x, x′) = uσ−1+ v ln |σ | + w (1)

whereσ = (1/2)(x − x′)2, andu, v, andw are smooth functions.2 These local
singularities give rise to the infinite ultraviolet results of quantum field theory
(Brown, 1992).3 To eliminate these infinities the theory must be renormalized in
such a way that meaningless divergent expressions become meaningful. This tech-
nique is well-known but not completely satisfactory, because by using it “. . .we
learned to peacefully coexist with alarming divergencies. . .but these infinities are

1 Instituto de Astronom´ıa y Fı́sica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires,
Argentina.

2 For Wightman functions see Haag (1993), cap. VII, Eq. (3.11). For Feynman functions see De Witt
(1964), Eqs. (17.61) and (16.72). For symmetrical functions see Castagninoet al. (1987).

3 There is also another kind of potentially dangerous singularities as we will see in Section 6.
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still with us, even though deeply buried in the formalism” (Roman, 1969). On
the other hand, as we know that the short distance singularities are the cause of
renormalization, if we somehow remove these singularities we will directly obtain
a finite and exact quantum field theory from scratch. Phrased in another way: in
this paper we will find the short distance singularity in two quantum field theory
models and we will show that if these singularities are subtracted the theory turns
out to be finite. The subtraction of short distance singularities has been essentially
used for many years, e.g., in quantum field theory in curved space–time, (Anderson
et al., 2000; Birrell and Davies, 1982; Castagninoet al., 1987) (and other chapters
of quantum field theory, e.g., Brown, 1992, Chap. 5), but it was not considered as
a general method with a rational motivation, as we are now trying to prove.

We hope that the study of the singular short distance structure will lead us, in
the future, either to find Lagrangians free of this sickness (may be superstring or
membrane Lagrangians) or to find more elaborated ways to remove this structure.
Moreover, since the quantum field theory equations can be highly nonlinear it will
be clear that, in a general case, the singular structure cannot be just removed by
adding terms similar to those of the bare Lagrangian. The mechanism must be more
general. Here we are presenting the physical basis of this mechanism. Essentially
we believe that, since the origin of the problem is the short distance singularities,
philosophically it is wrong to modify the Lagrangian until it yields a finite theory.
The cure must be provided where the sickness is located.

We will find the singular structure using usual dimensional regularization
(Bollini and Giambiaggi, 1972) and, in the cases where possible, Hadamard regu-
larization (Castagninoet al., 1987); moreover, we will remove it bytwo different
waysat two different levels of comprehension, which we will discuss below.

1.1. Simple Subtraction Method: Detection of the Local Singularities

In Sections 2–5 we will review this well-known method with three purposes:
(i) To introduce the main equations, (ii) to detect the local singularities (as in Eqs.
(28), (43), (80), (104), and (116)), and (iii) to show the modification of the roles
played by the coupling constant when we go from the usual method to the new
one and to obtain renormalization group equations with the new method. We will
study the theory in a space ofn dimensions. Generically the theory will be finite
for n 6= 4, but it will present short range singularities whenn→ 4. For example,
any two-point function will have the structure

w(2)(x − x′) = w(2)(s)(x − x′)+ w(2)(r )(x − x′) (2)

wherew(2)(s)(x − x′) is the singular component (in a sense that we will precisely
describe below), that diverges whenn→ 4 or x→ x′, andw(2)(r )(x − x′) is the
regular one. The subtraction method, for these functions, consists in making the
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singular part equal to zero or in subtracting the singular part fromw(2)(x→ x′).
We will give two examples of this procedure

1. Scalar quantum field theory in a curved space–time (a theory invariant
under the group of general coordinates transformations, with no self-
interaction and therefore with linear equations with variable coefficients)
in Section 2. In this case we only need two-point functions like those of
Eq. (2).

2. λφ4 theory (a theory invariant under the Poincar´e group with self-
interaction and therefore with nonlinear equations with constant coeffi-
cients) studied in Sections 3, 4, and 5. In the second example we will need
N-point functions.

These examples are chosen not only because they are the simplest but also
because the two theories are quite different and cover a large range of phenomena.4

Then, let us exactly state how we will define the singular and the regular
components in the general case ofN-point functions, in complete agreement with
the usual procedures of dimensional regularization. Ifw(N)(x1, x2, . . . , xN) are
some (symmetric)N-point functions (like Feynman or Euclidean functions) we can
define the corresponding functional generator (Haag, 1993, Eq. (II.2.21); Brown,
1992, Eq. (3.2.11)) as

Z[ρ] = expi

{
1

N!

∞∑
N=0

∫
w(N)(x1, x2, . . . , xN)

× ρ(x1)ρ(x2) · · · ρ(xN) dx1 dx2 · · ·dxN

}
(3)

where5

w(N)(x1, x2, . . . , XN) ∼ 〈0|Tφ(x1)φ(x2) · · ·φ(xN)|0〉 (4)

But, in a realistic field theory (namely a theory with interaction) these functions
are badly defined (as the two-point function of Eq. (2)) since they are objects with
mathematical properties that areworse than those of the distributions; moreover,
if these objects were distributions all the integrals∫

w(N)(x1, x2, . . . , xN)ρ(x1)ρ(x2) · · · ρ(xN) dx1 dx2 · · · dxN

4 For example, conformal or trace anomaly, conservation of the energy momentum tensor, etc. (see
example i).

5 The symbol∼ means that the r.h.s. of the next equation can also be truncated (Haag, 1993,
Eqs. (II.2.18) and (II.2.23).
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would be well-defined (if, e.g.,ρ(x) ∈ S the Schwarz space). But this is not the
case, as we will see. Hence,Z[ρ] and its derivatives are not well-defined.6

As we have already said in the case of quantum filed theory in curved
space–time we only deal with two-point functions. But for theλφ4 theory we
will deal with the two-, four-, and six-point functions, in the coincidence limit
where some points go to 0 and some points go to an arbitrary valuez, because
these are the only relevant functions in the perturbation expansion of this theory
up toλ2 order. So we will be only interested in defining the singular and regular
parts of the functionsw(2)(x1, x2), in the coincidence limitx1 = x2 = 0, function
w(4)(x1, x2, x3, x4), in the coincidence limitx1 = x2 = 0, x3 = x4 = z, and func-
tion w(6)(x1, x2, x3, x4, x5, x6), in the coincidence limitx1 = x2 = x3 = 0, x4 =
x5 = x6 = z. We will see that these coincidence limits have the general form
[w(2)(0)]β [w(2)(z)]α, namely the product of the power of an infinite quantity multi-
plied by the power of a distribution (or a worse mathematical object). In fact, these
powers appear in the higher order point functions (see Haag, 1993, Eq. (II.2.18)).
So we have two problems that we will solve using dimensional regularization:

i. To obtain the regular part ofw(2)(0): It is an easy problem since via
dimensional regularization,w(2)(0) reads

w(2)(0)=
C∑
γ=0

d(γ )

(n− 4)γ
(5)

whereC is a natural number andd(γ ) are some coefficients. Then the
singular and regular components will be defined as[

w(2)(0)
](s) =

C∑
γ=1

d(γ )

(n− 4)γ
(6)

and [
w(2)(z)

](r ) = d(0) (7)

Then the regular part of [w(2)(0)]β is simply [d(0)]β .
ii. To obtain the regular part of [w(2)(z)]α: This is a more difficult problem

since we must multiply the ill-defined functionw(2)(x1, x2) by itself. But
function w(2)(x1, x2) is worse than a distribution, so it cannot be multi-
plied by itself in a unique and well-defined way.7 Thus we will be forced

6 Namely, axiom B of (Haag, 1993, p. 58) is only valid for free theories, since from this axiom and
Schwartz “nuclear theorem” it is shown that (4) is a distribution. Moreover, it is necessary not
only that Z[ρ] be well defined but also its∂/∂ρ -derivatives. So allw(N)(x1, x2, . . . , xN ) must be
well-defined functions after renormalization.

7 This is where one type of divergency is “deeply buried in the formalism” (Roman, 1969). We will
find another type of potentially dangerous divergencies in Section 6.
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to define the multiplication procedure for, for example, [w(2)]2 and [w(2)]3

in an adhoc way based ondimensional regularization(see Brown, 1992,
pp. 162–167, 207–214). To stress this fact we will respectively call them
[w(2)](d)2 and [w(2)](d)3 (where the superscript “d” comes from “dimen-
sional regularization”). Then themultiplication procedurewill be the fol-
lowing:
a. Using dimensional regularization we will find that the powers are reg-

ular whenn 6= 4, but whenn→ 4 they behave as

[
w(2)(z)

](d)α =
D∑
δ=0

d(α,δ)(z)

(n− 4)δ
(8)

whereD is a natural number andd(α,δ)(z) are distributions (showing
that, in effect, the objects we are dealing with are worse than distribu-
tions).

b. The singular and regular components will be defined as

[
w(2)(z)

](d)α(s) =
D∑
δ=1

d(α,δ)(z)

(n− 4)δ
(9)

[
w(2)(z)

](d)α(r ) = d(α,0)(z) (10)

Moreover, the multiplication (ii) and the procedure to take the regular
part forz= 0 (i) arenot commutative. After these definitions we can sub-
stitute [w(2)(0)]β and [w(2)(z)]α by [w(2)(0)(r )]β and [w(2)(z)](d)α(r ). Then
if we consider only these regular parts, which are in general distributions
(but they are regular functions in the two examples below), the functional
generatorZ[ρ] and its derivatives (Eq. (3)) turn out to be as well-defined as
the theory that it generates. The existence of singularities like those of the
above equations is proved by the examples below (see also Section 5). The
decompositions (6), (7) and (9), (10) are not unique, since∞ =∞+ c or
∞ = c · ∞, for any finitec. This ambiguity will be present in our method,
as in ordinary renormalization theory, and it yields the running coupling
constants and the renormalization group, as we will see.

1.2. Functional Method

In Section 6 we will present a mathematical structure that naturally yields the
elimination of the singularities. We will follow the line of thought of Laura (1997,
1998) and Castagnino and Laura (2000), where a formalism to deal with systems
with continuous spectrum was introduced. It proves to be useful in the study of
decay, equilibrium, and decoherence (where we have defined a final intrinsically
consistent set of histories). So we claim that perhaps it is ageneral formalism
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that can also be used in the problem dealt with in this paper. This mathematical
structure would also be the rational justification of the somehow dictatorial or
childish subtraction method. This is the main contribution of the paper. The idea is
the following: Coarse-graining is a well-known technique where some features of
a system are considered relevant while others are not.8 The functional method of
Laura (1997, 1998) and Castagnino and Laura (2000) is a generalization of coarse-
graining,9 where the states are considered as functional over a certain space of
observables.10 Using this philosophy we will postulate that physical observables
are such that they cannot see the singular components of the states because these
components are irrelevant for these observables. Symmetrically, singularities could
be contained in the observables and we can postulate that physical states cannot
see the singular part of the observables.11 In this way we will obtain the automatic
subtraction of all kinds of singularities. There is a good physical reason for this
postulate: the singularities (either of states or observables) are just mathematical
artifacts originated in the oversimplified Lagrangian that we usually choose. Then,
clearly physical observables or states cannot see these mathematical, unphysical
objects. In a more intuitive language, the physical observables or states do not
see the singularities because they are too small (pointlike). Possibly the physical
observables and states just see up to Planck’s length.12

Using the Jaynes philosophy (Jaynes, 1957a,b; Katz, 1967) we can say that
if physicalobservables cannot seemathematicalsingularities (which in fact is a
very reasonable position) then the (singular) states of the usual theory are in real-
ity biased objects because they containarbitrary, unphysical information(i.e., the
singularities) that cannot be measured by the physical apparatuses that we have in
our laboratory, i.e., our physical observables (and in reality this is an experimental
fact: since apparatuses measure the values given by the finite renormalized the-
ory). Then the (rough material) singular states, observables, and the mean values
obtained from them arebiased, overinformedobjects containing dubious informa-
tion, because in fact “we have a basic ignorance of the nature of infinite energies
or infinitesimal distances” (Brown, 1992, p. 63), while renormalized (or free of
any kind of singularities) states, observables, and mean values areunbiasedobjects
containing just the physical information available. In fact, to suppose that we know

8 Or, in observables language, the observables of theory measure only the relevant features.
9 For example, classically, coarse graining is that particular case where the functionals are built using
the characteristic functions of lattices in phase space (see Laura, 1997, 1998).

10Moreover, this is the natural way to face the problem since the observables are more primitive than
the states; see Haag, 1993.

11Really this will be the case since observables are products likeφ(x1)φ(x2) · · · of field φ(x), which
are distributions or worse-defined mathematical objects.

12We could as well postulate that the singular part of the observables only sees the singular part of the
state. Even if there are physical reasons to introduce this postulate in the case of decoherence, they
are absent in the case of renormalization (see Section 6.2)
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and measure everything would be an “inexcusable hubris” (Brown, 1992, p. 64).
Moreover the resulting theory turns out to be insensitive to our degree of knowl-
edge (originated more or less in the precision of our measurement apparatuses),
thus we simplypostulate that this degree of knowledge is, and cannot be, infinite.
All this philosophy is embodied in the mathematical structure studied in Section 6.

We will discuss our conclusions in Section 7.

2. FIRST METHOD: SCALAR QUANTUM FIELD THEORY
IN CURVED SPACE–TIME

This theory is the simplest nontrivial example of the method, the theory of a
scalar neutral massive field in a curved space–time (of dimensionn, since we need
a formalism prepared for dimensional regularization) with metricgµν(x).13 Let us
consider the action14

(6.9) S= Sg+ Sm (11)

where

(6.11) Sg =
∫

(−g)
1
2 (16πG0)−1(R− 230) dnx (12)

and

Sm =
∫

(−g)
1
2 Lm dnx (13)

whereLm is the matter Lagrangian

(3.24) Lm(x) = 1

2
{gµν(x)φ,µ(x)φ,ν(x)− [m2+ ξR(x)]φ2} (14)

G0 and30 are the bare Newton and cosmological constants respectively,m is
the scalar field mass,gµν the inverse metric tensor (signature+,−,−,−), g its
determinant,ξ a numerical factor, andR(x) the Ricci scalar. For an in–out scatter-
ing we can define the functional generatorZ[ρ] such that

(6.15) Z[0] = 〈out, 0 | in, 0〉 = eiW (15)

so:

(6.19) W = −i ln〈out, 0 | in, 0〉 (16)

13The expert reader may go directly to Section 5 and consider Sections 2–4 as adidactical appendix
to be read after Section 7. But we consider that this didactical discussion is essential in order to
convince the standard reader that the new formalism also works in practice.

14For the sake of conciseness we do not demonstrate the basic equations of quantum field theory in
curved space–time. We just quote the number of the equation of Birrell and Davies (1982) at the
beginning of each of these. In Sections 3, 4, and 5 we will use Brown (1992) for the same purpose
in theλφ4 case.
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ThenW can be computed using the effective LagrangianLeff defined by

(6.36) W =
∫

[−g(x)]
1
2 Leff(x) dn(x) (17)

whereLeff reads

(6.37) Leff(x) = i

2
lim
x′→x

∫ ∞
m2

dm21DS
F (x, x′) (18)

where1DS
F (x, x′) is the De-Witt–Schwinger–Feynman–Green function:

(3.138) 1DS
F (x, x′) = −i1

1
2 (x, x′)(4π )−

n
2

∫ ∞
0

ids(is)−
n
2

× exp
[
−im2s+ σ

2is

]
F(x, x′; is) (19)

Theσ (x, x′) is half the square of the geodesic distance betweenx andx′,1(x, x′),
is the van Vleck–Morette determinant, and

(3.137) F(x, x′; is) = a0(x, x′)+ a1(x, x′)is+ a2(x, x′)(is)2+ · · · (20)

where thea coefficients can be obtained from Birrell and Davies (1982), Eqs.
(3.131), (3.132), and (3.133), and corresponds to an expansion in the metricgµν(x)
and its derivatives, precisely to orders 0, 2, 4,. . . in these derivatives. The coeffi-
cients are biscalars, namely all the formalism is covariant under general coordinates
transformation.

Equation (18) is the simple nontrivial example of the relation betweenLeff

and the two-point function1DS
F (x, x′) in the limit x→ x′, where in fact1DS(x, x′)

has a short distance singularity that makesLeff a divergent quantity, as we will see.
If we want to retain then = 4 dimension ofLeff, (length)−4, also whenn 6= 4, we
must introduce an arbitrary massµ. ThenLeff reads

(6.45) Leff = 1

2
(4π )−

n
2

(
m

µ

)n−4 ∞∑
j=0

aj (x)m4−2 j0
(

j − n

2

)
(21)

whereaj (x) = aj (x, x) are functions of the curvatures and its derivatives, and the
0 function diverges whenn→ 4.

2.1. Renormalization Using Dimensional Regularization

By the dimensional regularization method everything is now prepared to
renormalize the theory. Whenn→ 4 the first three terms (those that correspond
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to orders 0, 2, and 4) diverge and we obtain the divergent or singular component
of Leff that reads (we have dropped theO(n− 4) terms):

(6.44) L (s)(x) = −(4π )−
n
2

{
1

n− 4
+ 1

2

[
γ + ln

(
m2

µ2

)]}
×
(

4m4a0(x)

n(n− 2)
− 2m2a1(x)

n− 2
+ a2(x)

)
(22)

where:

(6.46) a0(x) = 1

(6.47) a1(x) =
(

1

6
− ξ

)
R

(6.48) a2(x) = 1

180
Rαβγ δR

αβγ δ − 1

180
RαβRαβ

− 1

6

(
1

5
− ξ

)
¤R+ 1

2

(
1

6
− ξ

)2

R2 (23)

whereRαβγ δ is the curvature tensor andRαβ = Rµαµβ . The usual renormalization
procedure is to absorb this singular component in the bareSg, so we can renormalize
G0 and30 as

(6.50) 3phys= 30+ 32πm2G0

(4π )
n
2 n(n− 2)

{
1

n− 4
+ 1

2

[
γ + ln

(
m2

µ2

)]}
(24)

(6.51) Gphys= G0/1+ 16G0
2m2

(
1
6 − ξ

)
(4π )

n
2 (n− 2)

{
1

n− 4
+ 1

2

[
γ + ln

(
m2

µ2

)]}
(25)

(where we have neglected the square terms in the bare constants) so we chooseG0

and30 in such a way thatGphys and3phys turn out to be finite whenn = 4. But
this is not enough since the divergence of thea2(x) term cannot be eliminated in
this way, so the theory with actionSg is not renormalizable. But, if we add three
“ H ” terms to the gravitational Lagrangian, that are linear combinations of the three
terms of Eq. (23), i.e., linear combinations ofR2, RµνRµν , Rαβγ δRαβγ δ, and¤R,
(there are only three “H ” terms because there is a relation among the last four
terms) and renormalize the three corresponding coefficients (known asα, β, γ )
the theory becomes renormalizable and finite (see Birrell and Davies, 1982, Eqs.
(6.52)–(6.56)). So, from now on we will consider that these “H ” terms are added
to the gravitational Lagrangian (12).
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But let us observe that essentially what we have done with this standard
renormalization recipe is to define, as proved in Birrell and Davies (1982), a
regular-subtracted Lagrangian,15 that forn = 4 reads:

(6.59) L (r ) = Leff − L (s) = 1

32π2

∫ ∞
0

∞∑
j=3

aj (x)(is) j−3 e−im2si ds (26)

which turns out to be finite and can be used instead of the divergentLeff.16 Thus
we can foresee that both the standard renormalization recipe and the subtraction
recipe coincide. What we have really made is a subtraction using dimensional
regularization. Making the same subtraction in1DS

F (x, x′) (Eq. (20)), we obtain
the regular1DS(r )

F (x, x′).17 We will make this calculation in the next section using
Hadamard regularization (Castagnino, Harari, and Nu˜nez, 1987) because using
this method we can better show the presence and nature of the local singularities.

2.2. Hadamard Regularization and the Subtraction Recipe

Let us now see how we can directly work in then = 4 case. The divergencies
now appear whenx→ x′ (not whenn→ 4 as in the previous section). In this
section we will see how the two singular behaviors are related. The effective
Lagrangian (21) reads

(6.38) Leff = − lim
x′→x

1
1
2 (x, x′)
32π2

∫ ∞
0

ds

s3
e−(m2s− σ

2s )[a0(x, x′)

+a1(x, x′)is+ a2(x, x′)(is)2+ · · ·] (27)

From Eqs. (19) we may compute

1DS
F (x, x′) = −i

1
1
2 (x, x′)
(4π2)

∫ ∞
0

ids (is)−2 e−(m2s− σ
2s )[a0(x, x′)+ a1(x, x′)is

+a2(x, x′)(is)2+ · · ·] = 1DS
F (x, x′)+ 1

2
i1DS(1)

F (x, x′) (28)

15We are using a particular criterion to define the singular component. This criterion is neither unique
nor irrelevant (Castagninoet al., 1986). It is clear that the singular term must have the form∞×
geometrical object(namely invariant under general coordinates transformations). But this object can
be chosen in a variety of ways, since, as we have said, we know that∞ =∞+ c or∞ = c · ∞ for
any finitec.

16Equation (26) already shows in Birrell and Davies (1982) that subtraction was used in quantum field
theory in curved space–time, as we have in the introduction.

17Since this is the only nonvanishing truncated point function in the theory, all ordinary point functions
of the theory are finite and they can directly be computed.
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where (De Witt, 1964, Eqs. (17.61) and (17.62))

1DS
F (x, x′) = 1

1
2 a0

8π
δ(σ )− 1

1
2

8π
θ (σ )

[
1

2
(m2a0− a1)

− 2σ

22 · 4(m4a0− 2m2a1+ 2a2)

+ (2σ )2

22 · 42 · 6(m6a0− 3m4a1+ 6m2a2− 6a3)+ · · ·
]

(29)

and

1
DS(1)
F (x, x′) = −1

1
2 a0

4π2σ
+ 1

1
2

2π2
log

eγ

2
|2m2σ |

[
1

2
(m2a0− a1)

− 2σ

22 · 4(m4a0− 2m2a1+ a2)

]
− 1

1
2

2π2

[
1

4
m2a0− 2σ

22 · 4

×
(

5

4
m4− 2m2a1− a2

)
+ (2σ )2

22 · 42 · 6
(

5

3
m6a0− 9

2
m4a1

+ 15

2
m2a2− 9

2
a3

)
+ · · ·

]
1

1
2

2π2

[(
a2

4m2
+ a3

4m4
+ a4

8m6
+ · · ·

)
− 2σ

22 · 4
(

a3

m2
+ a4

m4
+ · · ·

)
+ · · ·

]
(30)

According to dimensional regularization the singular part of1DS
F (x, x′) corre-

sponds to the one with coefficientsa0, a1, a2 (see (22)). The remaining terms are
the regular part (see (26)). Then,

1
DS(s)
F (x, x′) = 1

1
2 a0

8π
δ(σ )− 1

1
2

8π
θ (σ )

[
1

2
(m2a0− a1)− 2σ

22 · 4(m4a0− 2m2a1

+ 2a2)

]
+ i

2

{
1

1
2 a0

4π2σ
+ 1

1
2

2π2
log

eγ

2
|2m2σ |

[
1

2
(m2a0− a1)

− 2σ

22 · 4(m4a0− 2m2a1+ a2

]
− 1

1
2

2π2

[
1

4
m2a0− 2σ

22 · 4

×
(

5

4
m4− 2m2a1− a2

)
+ (2σ )2

22 · 42 · 6
(

5

3
m6a0− 9

2
m4a1

+ 15

2
m2a2

)
+ · · ·

]
+ 1

1
2

2π2

a2

4m2

}
. (31)
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This 1DS(s)
F (x, x′) contains all the terms that diverge whenσ → 0 (like δ(σ ),

1/σ, logσ ) plus the terms with a divergent first derivative whenσ → 0 (like
θ (σ ), σθ (σ ), σ logσ ) plus some convergent terms whenσ → 0 (like 1, σ, σ 2).
In this way we arrive at the first important conclusion of this section:The poles
of 0( j − n

4) from which the three coefficients a0, a1, and a2 originate correspond
to the divergent terms or the terms with divergent derivative whenσ → 0. There
also are convergent terms in1DS(s)

F (x, x′) but they are physically irrelevant as we
will soon see. The regular part of1DS

F (x, x′) reads

1
DS(r )
F (x, x′) = −1

1
2

8π
θ (σ )

[
(2σ )2

22 · 42 · 6(−6a3)+ · · ·
]
+ i

2

{
1

1
2

2π2
log

eγ

2
|2m2σ |

× [σ 2+ · · ·] − 1
1
2

2π2

[
(2σ )2

22 · 42 · 6
(
−9

2
a3

)]
+ 1

1
2

2π2

×
[(

a3

4m4
+ a4

8m6
+ · · ·

)
− 2σ

22 · 4
(

a3

m2
+ a4

m4
+ · · ·

)
+
]}

(32)

and contains terms that are convergent and with first derivative also convergent
whenσ → 0.

Then we can define the “Hadamard regularization” as the prescription in
that the singular part of1DS

F (x, x′) contains all the terms divergent or with first
derivative divergent whenσ → 0 while the regular part of1DS(r )

F (x, x′) contains
the terms that are convergent and with convergent first derivative whenσ → 0. At
first sight the dimensional regularization and the Hadamard regularization do not
coincide, since in1DS(s)

F (x, x′) there are convergent terms with all their derivatives,
namely those like 1,σ, andσ 2. Nevertheless the difference is physically irrelevant
since these terms are multiplied by termsa0(x, x′), a1(x, x′), anda2(x, x′) that
whenσ → 0 have the limits

lim
x′→x

ai (x, x′) = ai (x), i = 1, 2, 3 (33)

From Eq. (23) we see that these terms are proportional to the linear combinations
of I , R, R2, RµνRµν , Rαβγ δRαβγ δ, and¤R, contained among the terms of the
gravitational Lagrangian. Therefore the terms we are discussing can be absorbed in
the gravitational actionSg supplemented by theH terms. Then, in order to unify the
two regularizations,1DS(r )

F (x, x′) must be difined modulo some terms with arbitrary
coefficients corresponding to the undefined terms 1,σ, andσ 2. In the effective
Lagrangian these terms will produce finite terms that can be added to3, G, α, β,
andγ (Birrell and Davies, 1982, Eq. (6.60)). The coefficients of these terms will
be calledl , g, a, b, andc. Dropping these terms for the moment, we can compute
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the regular Lagrangian corresponding to1DS(r )
F (x, x′) that in the coincidence limit

reads

lim
x→x′

1
DS(r )
F (x, x′) = lim

x′→x

i1
1
2

4π2

[
a3

4m4
+ a4

8m6
+ · · ·

]
(34)

Then as limx′→x 1 = 1 (De Witt, 1964, Eq. (17.86)) we have

lim
x→x′

1
DS(r )
F (x, x′) = i

4π2

{
a3

4m4
+ a4

8m6
+ · · ·

}
(35)

We may now add the arbitrary coefficients and obtain

lim
x→x′

1
DS(r )
F = i

(4π )2

{
4lm2+ ga1+ a2

m2
+ a3

m4
+ · · ·

}
(36)

wherel andg are the already defind arbitrary coefficients and thosea, b, andc
correcponding toα, β, andγ are hidden ina2. Using Eq. (18) we obtain18

L (r )(x) = 1

32π2

[
2lm4+ gm2a1+ a2 logm2+ a3

m2
+ · · ·

]
(37)

which turns out to be equal to Eq. (26) (except that in the quoted equation the first
three terms are missing, since they are absorbed inSg supplemented by the “H ”
terms), showing the coincidence of the two methods.

Therefore the subtractedS(r ) reads

S(r ) =
∫

(−g)
1
2

[
− 230

16π2G0
+ m4l

16π2
+ R

16π2G0
+ 1

6

gm2R

32π2

+ logm2a2

32π2
+ a3

32π2m2
+ · · ·

]
(38)

where the quantities−230/16π2G0+m4l/16π2 and 1/16π2G0+ (1/6)(gm2/

32π2) must be determined by physical measurements (as theα, β, andγ that are
hidden ina2).

So using Hadamard regularization and the subtraction recipe the result is,
somehow, simpler since Eqs. (24) and (25) just read

Gphys= G0/1+ 1

6
G0gm2, 3phys= 30− 1

2
G0m2l (39)

so the bare constants are finite and would coincide, from the very beginning, with
the physical ones for the choicel = g = 0 of the arbitrary coefficientsl andg. Thus
using Hadamard regularization and the subtraction recipe, “we must remove1(s)

18In the first two terms, instead of
∫∞

m2 we use− ∫ m2

0 and in the third term− ∫ m2

1 , because they work
in these terms as

∫∞
m2 in the rest of the terms (see Birrell and Davies, 1982, p. 157).
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from1 and use1(r )” we have obtained the same result as in Section 2.1: all the
infinities are removed and substituted by finite quantities. Thus the “subtraction
recipe” works as the standard renormalization. The new recipe just consists in
the elimination of the singular (or with singular first derivative) short distance
components of the two-point function1DS

F (x, x′), the only relevant truncated two-
point function in this theory. If we would have aλφ4 interaction, more truncated
point functions must be subtracted, as we will see in the next example.

3. FIRST METHOD: λφ4 THEORY IN THE LOWEST ORDER

In this section we will use the subtraction method in theλφ4 theory with
Lagrangian19

(3.3.1) L = −1

2
(∂µφ)2− 1

2
m2φ2− 1

4!
λφ4+3 (40)

Dimensional regularization and minimal subtraction will be done following Brown
(1992).

It must be clear that, as we will isolate the divergent parts and then subtract
them, the theory will necessarily turn out to be finite. Thus our only aim, in Sections
3, 4, and 5 is to detect the local divergencies and to compare our method with the
usual one to see how the results are obtained and to show that they are similar, (so in
each paragraph “i” we will see how we can find the singular and regular parts of the
objects appearing in the theory, in “ii” we will review the usual renormalization but
by using our notation, and in “iii” we will see how the subtraction recipe handles
the divergence problem and then we will compare the results).

3.1. Singular and Regular Parts of∆E(0) and Mass Renormalization

i. From Eq. (1) we know that1E(x) is one of the main characters of the
play. It is divergent whenx→ 0. So we will define the singular and the
regular parts of1E(0), first using dimensional diagonalization and then
the Hadamard one.20 In n dimensions it reads as ( just computing the

19In Sections 3, 4, and 5 the numbers before the equations correspond to Brown (1992) (we use the
formalism and methods of this book as a sample of the standard theory). Moreover, comparing
Eqs. (14) with (40) we see that there is a change of convention in the sign of the norm, so in the
following sections we change this convention in order that our equations would coincide with those
of the corresponding references. Also, in order to comply with Brown (1992) we will sometimes use
1F (x) and sometimes1E(x).

20In both cases the singular component will have the form∞×geometrical object(in this case invariant
under a Lorentz transformation). Of course there are many possible subtractions, as in the previous
section. In section 3.2 we will use the minimal one as in Brown (1992). In section 3.3 we will use
the Hadamard one and we will show the finite difference between the two choices.
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tadpole graph and neglecting nonconnected graphs that will be taken into
account in Section 3.2 and 4.2)

(4.3.8) lim
x→x′

1E(x − x′) = 1E(0)= m2

(4π )2

(
m2

4πµ2

) n
2−2

0
(
1− n

2

)
(41)

whereµ is an arbitrary mass. We can now difine1(s)
E (0), the divergent

component of1E(0). As the0
(
1− n

2

)
behaves as

0
(
1− n

2

)
≈ 2

n− 4
+ γ (42)

whenn→ 4, (whereγ = π2/12 is the Euler–Mascheroni constant), using
the minimal subtraction we find the singular part of1E(0):

1
(s)
E (0)= 2m2

(4π )2

1

n− 4
(43)

In this way we have detected the local divergency. So we reach a decom-
position (as (6) and (7))

1E(0) = 1(r )
E (0)+1(s)

E (0)

= m2

(4π )2

[(
m2

4πµ2

) n
2−2

1

2
0
(
1− n

2

)
− 2

n− 4

]
+ 2m2

(4π )2

1

n− 4

(44)

Then,

1
(r )
E (0)= m2

(4π )2

[(
m2

4πµ2

) n
2−2

1

2
0
(
1− n

2

)
− 2

n− 4

]
(45)

Precisely whenn→ 4 we have

1
(r )
E (0)= m2

(4π )2

[
log

(
m2

4πµ2

)
+ γ − 1

]
(46)

whereµ is the arbitrary mass, so essentially1(r )
E (0) has an arbitrary value.

ii. Let us now see how1(r )
E (0) is related with the mass renormalization. To

correct the divergency of〈φ0(x)φ0(x′)〉 we must correct the divergency of
its Fourier transform:

(4.3.2) G0(p) = 1

p2+m2
0+60(p)

(47)
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The computation of the tadpole graph (in the firstλ order) yields

(4.3.7) 6
(1)
0 (p) = 1

2
λ01E(0) (48)

that makes the termm2
0+6(1)

0 (p) divergent. Precisely,

m2
0+6(1)

0 (p) = m2
0+

1

2
λ0
[
1

(r )
E (0)+1(s)

E (0)
]

(49)

In usual renormalization we consider that the (bare) massm0 is divergent.
Then to compensate this divergency we define a (dressed) massm such
that

m2
0+6(1)

0 (p) = m2+6(1)(p) (50)

where both terms in the r.h.s. are finite, precisely,

m2
0 = m2

[
1− λ0

2
1

(s)
E (0)

]
(51)

and

6(1)(p) = 1

2
λ01

(r )
E (0) (52)

Then the physical mass is

(4.3.15) m2
phys= m2+6(1)(p) (53)

wheremphys is a constant while6(1)(p) andm2 are finite functions ofµ
(cf. Eq. (46)), satisfying the renormalization group equations.

iii. Using the subtraction recipe we would directly say that in Eq. (49), in
reality1(s)

E (0)= 0 and we will obtain

m2
phys= m2

0+
1

2
λ01

(r )
E (0) (54)

which is equivalent to (53) and where
a. m0 plays the role ofm; it is therefore finite.
b. Since1(r )

E (0) is a function ofµ, m0 must also be a function ofµ in
such a way thatm2

phys turns out to be a constant. Thenm2
0 satisfies the

same renormalization group equation as them2 of Eq. (53).
This will be a common feature of subtraction recipe for all physical

constants:there is no need to introduce a dressed quantity since the bare
quantity takes its role, then the bare quantity becomes a function ofµ

satisfying the renormalization group equations.
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In fact, in the usual theory we obtain the renormalization group equations
from

(5.4.1) Z[m0, λ0, . . .] = Z[µ, m, λ, . . .] = const.

wherem0, λ0, . . .are constants andm, λ, . . .are finite functions ofµ. In the new
approach this equation is changed by

Z[mphys, λphys, . . .] = Z[µ, m0, λ0, . . .] = const.

wheremphys, λphys, . . .are constants andm0, λ0, . . .are functions ofµ. These two
equations are formally equal, so we will obtain the same renormalization group
equation in both theories.

3.2. The Cosmological Constant and the Hadamard Regularization
for ∆E(0) in the Caseλ = 0

i. Let us begin making an identification.1(r )
E (0) in flat space–time can also

be obtained in the casen = 4 (but using Hadamard subtraction and not
minimal subtraction) making all the curvatures zero in Eq. (34), (namely
making all thea zero buta0 = 1) and multiplying by−i (since1F →
i1E, Brown, 1992, p. 194). So we obtain (whenλ = 0)

1
(r )
E (0)= lim

x,x′→0
1

(r )
E (x, x′) = 4lm2

(4π )2
(55)

so essentially in this case limx,x′→01
(r )
E (x, x′) is just an arbitrary finite

constant as in the case of (46). For the caseλ 6= 0 some corrections will
appear in Eq. (34) (Birrell and Davies, 1982, p. 301) but the r.h.s. of
Eq. (55) will always be an arbitrary constant. The origin of this ambi-
guity is the usual one: an infinite quantity can only be considered mod-
ulo a finite undefined constant. So the arbitrary singularity coefficient
limx,x′→01

(r )
E (x, x′), defined whenn = 4, plays the same role thatµ in

the casen 6= 4. Both parameters are related, whenλ = 0, by:

4l = log

(
m2

4πµ2

)
+ γ − 1 (56)

Thus, this preliminary consideration leads us to suppose that there must
be something like a cosmological constant inλφ4 theory also. In fact,
in traditional quantum field theory the additional infinite term that ap-
pears, due to the addition of infinite ground energy termsω/2 can be
considered as an unrenormalizable cosmological constant. This term is
eliminated using normal ordering. But this renormalization is better un-
derstood introducing the just-mentioned cosmological constant (Brown,
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1992, Section 4.2) that must be renormalized. Using our equation we can
define a cosmological constant3 for this flat space–time theory, if we
just add to the usual Lagrangian a term3 as we have done in Eq. (40).
This term reads (see (38) and (56) in the casen = 4)

3 = m4

16π2
l = m4

4(4π )2

[
log

(
m2

4πµ2

)
+ γ − 1

]
(57)

ii. Let us see how the renormalization method introduces the cosmological
constant. Whenλ = 0 the vacuum-to-vacuum expectation (corresponding
to the vacuum one-loop graph) reads

(4.2.1) 〈0+ | 0−〉 =
∫

[dφ] exp

{
−
∫ (

dn
Ex
)

×
[

1

2
(∂µφ)2+ 1

2
m2

0φ
2−30

]}
(58)

Thus

(4.2.2)
∂

∂m2
〈0+ | 0−〉 = −1

2

∫ (
dn

Ex
) 〈0+|φ(x)2|0−〉

= −1

2
〈0+ | 0−〉

∫ (
dn

Ex
)
1E(0) (59)

and

(4.2.4) 〈0+ | 0−〉 = exp

[
−1

2

∫
dm2

∫ (
dn

Ex
)
1E(0)

]
(60)

But if E is the cosmological energy density of the universe we also have

(4.2.9) 〈0+ | 0−〉 = exp

[
−
∫

dn
Ex E

]
(61)

So

E = 1

2

∫
dm2 1E(0)−30 (62)

where30 can be considered an integration constant. Then from Eq. (44)
we have

E = 1

2

∫
dm2 1

(r )
E (0)+ 1

2

∫
dm2 1

(s)
E (0)−30 (63)

so we can consider that30 is infinite in such a way as to cancel the infinite
in 1(s)

E (0), namely,

30 = 1

2

∫
dm2 1

(s)
E (0)− µ4−n3 = 1

2

m2
0

(4π )2

1

n− 4
− µ4−n3 (64)
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where3 is the finite cosmological constant. So finally

E = 1

2

∫
dm2 1

(r )
E (0)+ µn−43 (65)

and whenn→ 4 we have

(4.2.20) E = 1

4

m4

(4π )2

[
ln

(
m2

4πµ2

)
+ γ − 3

2

]
−3 (66)

whereE is finite and it is not a function ofµbut3 is a function of this mass.
Using the Hadamard method of point i we can directly see these facts
using Eq. (57), since theµ variation is cancelled in (66). It remains a
finite constant, which is unimportant since we can add an arbitrary con-
stant to the Lagrangian (40). As usual, the conditionE = const .originates
the renormalization group equation for3.

iii. Directly from (62) using subtraction recipe we would have

E = 1

2

∫
dm2 1

(r )
E (0)−30 (67)

that forn→ 4 gives

E = 1

4

m4

(4π )2

[
log

(
m2

4πµ2

)
+ γ − 2

]
−30 (68)

namely (66) with the finite merely unimportant difference1E =
−m4/16(4π2), as already discussed, and30 playing the role of3. Now
both terms in the r.h.s. are finite and functions ofµ while E = Ephys is a
physical constant, yielding the renormalization group equation for30 as
in the usual renormalization case.

From now on we will only use the dimensional regularization since the sin-
gular structure of the higher point function is not as well-studied as the one of the
two-point function.

4. FIRST METHOD: λφ4 THEORY AT SECOND
PERTURBATION ORDER

4.1. Singular and Regular Parts of [∆F (z)](d)2 and the Coupling
Constant Renormalization

i. Computing the fish graph we found that the scattering amplitudeT reads

(3.5.11) T = λ0+ 1

2
λ2

0[F(s)+ F(t)+ F(u)] (69)
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whereλ0 is the coupling constant ands, t , andu the Mandelstam variables;
F reads21

(3.5.13) F(−P2) = − i

2

∫
(d4z) ei Pz〈0|Tφ2(0)φ2(z)|0〉 (70)

(as in Brown (1992) we have omitted the disconnected graphs that were
taken into account in Section 3.2, and we will again consider in 4.2);
〈0|Tφ2(0)φ2(z)|0〉 is the four-point function divergent coincidence limit
mentioned in Section 1.1 that we must study and subtract, precisely,

(3.5.9) 〈0|Tφ2(0)φ2(z)|0〉 = −21F (z)2 (71)

So we see that the coincidence limit is the (undefined) product of1F (z)
by itself. Using dimensional regularization, as explained in Section 1.1,
we define

〈0|Tφ2(0)φ2(z)|0〉 = −21F (z)(d)2 (72)

We will decompose this quantity as

1F (z)(d)2 = 1F (z)(d)2(s) +1F (z)(d)2(r ) (73)

according to the prescription (9)–(10). Then we will obtain the regular
F (r )(−P2) as

F (r )(−P2) = i
∫

(d4z) ei Pz1F (z)(d)2(r ) (74)

And, if we use thisF (r ) instead ofF in Eq. (69) the physicalT will turn
out finite. We can directly make all the procedure onF(−P2), the Fourier
transform of1F (z)2. Using dimensional regularization we obtain

(3.5.30) F(−P2) = − µ
n−4

(4π )2
0
(
2− n

2

) ∫ 1

0
dα

×
[

m2+ α(1− α)P2

4πµ2

] n
2−2

(75)

21Really Eq. (3.5.13) in Brown (1992) reads

(3.5.13) F(−P2) = i
∫

(d4z) ei Pz1F (z)2

but we must remember that1F (z) is a singular function (something worse than a distribution) so
1F (z)2 is a meaningless expression unless a multiplication procedure would be prescribed (which is
done in Eq. (3.5.14) of Brown, 1992). Moreover the decomposition (3.2.19), of the same reference,
that is the base of the equation above, cannot be used when two points coincide, since this decompo-
sition is inspired in the case when these two points are far apart, as in the definition of the truncated
functions.
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This equation can be considered as a way to obtain the square1F (z)2,
i.e., to make this square when it is possible (n 6= 4) and then take the limit
n→∞. Whenn→ 4 it is

(3.5.31) 0
(
2− n

2

)
→ 2

4− n
+ f (n) (76)

where f (n) is a regular function such that limn→4 f (n) = −γ . So, we
can find the Fourier transform of the decomposition (73):

F(−P2) = µn−4[F (s)(−P2)+ F (r )(−P2)] (77)

where the factorµn−4 has been displayed to makeF (s)(−P2) and
F (r )(−P2) dimensional and where

F (s)(−P2) = − 1

(4π )2

2

(4− n)

∫ 1

0
dα = − 1

(4π )2

2

(4− n)
(78)

and

(3.5.33) F (r )(−P2) = − 1

(4π )2

∫ 1

0
dα

{
0
(
2− n

2

)

×
[

m2+ α(1− α)P2

4πµ2

] n
2−2

+ 2

n− 4

}
(79)

Making now the inverse Fourier transformation of Eq. (78) we have that

i1F (z)(d)2(s) = 1

(4π )2

2

n− 4
δ(z) (80)

which, in fact, has the form announced in Eq. (9). It is singular when
z= 0 and it shows that only the regular part is relevant whenz 6= 0. So
we have detected the local divergency. Again, the nonuniqueness of the
result is shown by the presence ofµ in Eq. (77).

ii. The usual renormalization procedure would be to put the singular and
regular parts in (69) to obtain

(3.5.37) T = λ0+ λ2
0
µn−4

(4π )2

3

n− 4
+ µ

n−4

2
λ2

0

× [F (r )(s)+ F (r )(t)+ F (r )(u)] (81)

where the physical quantityT must be finite andµ-independent. This is
achieved by introducing a renormalizedλ such that

(3.5.38) λ0 = µ4−nλ

(
1− 3λ

(4π )2

1

n− 4

)
(82)



P1: GVG/GVM

International Journal of Theoretical Physics [ijtp] PP238-343982 November 7, 2001 7:51 Style file version Nov. 19th, 1999

2164 Castagnino

so thatλ0 turns out to be infinite andλ finite. Then

(3.5.48) T = λ+ 1

2
λ2
[
F (r )(s)+ F (r )(t)+ F (r )(u)

]
(83)

where all the magnitudes are finite. AsT isµ-independent we can obtain
the renormalization group equation forλ.

iii. According to the subtraction method, we must make zero1F(z)(d)2(s)

or F (s)(−P2) and then we obtain the following finite physical value
of T .

(3.5.48) T = λ0+ 1

2
λ2

0

[
F (r )(s)+ F (r )(t)+ F (r )(u)

]
(84)

whereλ0 is a finite quantity.
Making the limitn→ 4 it turns out that

(3.5.66) F (r )(s) = 1

(4π )2

{
log

(
m2eγ

4πµ2

)
+
√

1− 4m2

s

× log

[√
s− 4m2−√s√
s− 4m2+√s

− 2

]}
(85)

We see that with the substitutionλ0↔ λ, Eqs. (83) and (84) are the
same. In the case of the subtraction methodλ0 is a finiteµ function, and as
T is µ-independent we can obtain the same renormalization group equation as
above.

4.2. The Cosmological Corrected Constant and [∆E(0)]2

i. In the previous section we have neglected nonconnected terms, e.g. in
Eq. (48), because the mass term was a consequence of the equation

(4.3.5) G(1)
0 (x − x′) = −1

2
λ01E(0)

∫ (
dn

Ex̄
)
1E(x − x̄ )1E(x − x̄)

(86)
that actually reads

G(1)
0 (x − x′) = −1

2
λ0

∫ (
dn

Ex̄
) {
1E(0)1E(x − x̄)1E(x − x̄)

+ 1

4.3
1E(x − x′)[1E(0)]2

}
(87)
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Moreover, the cosmological constant is originated in the equation

(3.3.9) 〈0+ | 0−〉 =
∫

[dφ] exp

{
−
∫

L0
(
dn

Ex
)}

× exp

{
−λ0

4!

∫
φ4
(
dn

Ex
)}

= 〈0+ | 0−〉(0)− λ0

4!
〈0+|

∫
φ4
(
dn

Ex
)|0−〉(0)+ · · ·

= 〈0+ | 0−〉(0)− 3λ0

4!

∫ (
dn

Ex̄
)

[1E(0)]2〈0+ | 0−〉(0)

(88)

which corresponds to Eq. (60) with an extra term.〈0+ | 0−〉(0) corresponds
to the caseλ0 = 0 and the second term to the nonconnected graphs (the
“eight” and the “square of the figure eight,” etc.). In all these expressions
[1E(0)]2 appears and it must be substituted by [1E(0)(r )]2 according to
the subtraction recipe. As1E(0) is not a distribution, but just the divergent
quantity (41), we must only substitute it by1(r )

E (0), using decomposition
(6) and (7), and making Eqs. (87) and (88) finite.

ii. Let us now go to the renormalization method: At order two we have

(4.4.5) E = mn

(4π )
n
2

1

n
0
(
1− n

2

)
− 1

2
µn−4 m4

(4π )4

1

n− 4

+ 1

2
µn−4 λm4

(4π )2

[(
m2

4πµ2

) n
2−2

1

2
0
(
1− n

2

)
− 1

n− 4

]2

+ 1

2
µn−4 m4

(4π )2

1

n− 4

(
1− λ

(4π )2

1

n− 4

)
−30 (89)

It can be checked that the first two lines of this equation are finite when
n→ 4. So we must define a renormalized cosmological constant3 such
that

(4.4.6) 30 = µn−4

[
1

2

m4

(4π )2

1

n− 4

(
1− λ

(4π )2

1

n− 4

)
+3

]
(90)

Then we have the final finite expression

E = mn

(4π )
n
2

1

n
0
(
1− n

2

)
− µn−4 1

2

m4

(4π )2

1

n− 4
− µn−43

+ 1

2
µn−4 λm4

(4π )2

[(
m2

4πµ2

) n
2−2

1

2
0
(
1− n

2

)
− 1

n− 4

]2

(91)
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which is finite whenn→ 4. In fact, whenλ = 0, we have that

E = mn

(4π )
n
2

1

n
0
(
1− n

2

)
− µn−4 1

2

m4
0

(4π )2

1

n− 4
− µn−43 (92)

which is a finite quantity, as we have proved in Section 3.2 (it corresponds
to 〈0+ | 0−〉(0)), while[(

m2
0

4πµ2

) n
2−2

1

2
0
(
1− n

2

)
− 1

n− 4

]
(93)

is finite for (45), so the r.h.s. of Eq. (91) is finite. Whenn→ 4 we find

E = m4

4(4π )2

[
log

(
m2

4πµ2

)
+ γ − 3

2

]
+ λ

8

m4

(4π )2

×
[
log

(
m2

4πµ2

)
+ γ − 3

2

]2

−3 (94)

The terms of the r.h.s. areµ functions that originate the renormalization
group equation as usual.

iii. Using directly the subtraction method in Eq. (89) we would have when
n→ 4:

E = m4

4(4π )2

[
log

(
m2

4πµ2

)
+ γ − 1

]
+ λ

8

m4

(4π )2

×
[
log

(
m2

4πµ2

)
+ γ − 2

]2

−30 (95)

with all terms finite and30 a function ofµ as usual, which is equal to (94)
with the exception of the already known unimportant constant. For both
methods the renormalization group equation can be obtained prescribing
thatE would not be a function ofµ.

4.3. The [∆E(z)](d)3 and the Wave Function Renormalization

i. In reality mass renormalization of Section 3.1 is based in the Green
function:

(4.3.4) G(1)
0 (x − x′) = − 1

4!
λ0

∫ (
dn

Ex̄
) 〈φ(x)φ(x′)φ4(x̄)〉(0) (96)

that can be written as

(4.3.5) G(1)
0 (x − x′) = − 1

4!
λ01E(0)

∫ (
dn

Ex̄
)
1E(x − x̄)1E(x′ − x̄)

(97)
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In the next order we must compute

(4.5.2) G(2)
0 (x − x′) = 1

2

(
−λ0

4!

)∫ (
dn

E y
) (

dn
Ez
)

×〈φ(x)φ(x′)φ4(y)φ4(z)〉(0) (98)

Computing this Green function, as we have done with the previous one,
we find
a. Vacuumdisconnected graphs: They are the “eight” and the “square

eight,” etc. which are removed by ordinary renormalization of the
cosmological constant or by the corresponding subtraction that makes
this constant finite but undefined, as shown in Eqs. (57) or (95), (Brown,
1992, pp. 205–206).

b. Disconnectedtwo legs graph: It is the product of the “tadpole” by the
“eight.” Both graphs have already been considered either by renormal-
ization or subtraction.

c. Connectedtwo legs graphs: Namely:
c1. The “double scoop” or “double bubble” graph, with an integral

(4.5.3) 6
(2,1)
0 (p) = −1

4
λ2

0

∫ (
dn

E y
)
1E(y)21E(0) (99)

(which really is not a function ofp). It has two factors.
–1E(0), which was considered in Section 3.1 and made finite by

both recipes.
–1E(y)2 = 1E(y)(d)2, which was considered in Section 4.1, since

the integral in Eq. (99) is just the integral in Eq. (74) withP = 0,
which also was made finite by both recipes. So6

(2,1)
0 turns out

to be finite either way. Finally let us observe that in6(2,1)
0 the

typical expression [w(2)(0)]β [w(2)(z)]α, of Section 1.1, appears
for the first time in its complete version.

c2. The “setting sun” graph, which is a function ofp

(4.5.4) 6
(2,2)
0 (p) = −1

6
λ2

0

∫ (
dn

Ex
)
1E(x)3 e−i px (100)

To deal with this integral we must first compute1(d)3
E (x) multiplying

1E(x) three times, then make its dimensional regularization, and finally
its Fourier transform1(d)3

E (p). We obtain

(4.5.37) 6
(2,2)
0 (p) = −1

6

(
λ

(4π )2

)2

p2

(
p2

4πµ2

)n−4

× 0
(

n
2 − 1

)3
0(3− n)

0
(

3n
2 − 3

) (101)
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As whenn→ 4

0
(

n
2 − 1

)3
0(3− n)

0
(

3n
2 − 3

) → 1

2

1

(n− 4)
(102)

then [
6

(2,2)
0 (p)

](s) = − 1

12

(
λ

(4π )2

)2

p2 1

n− 4
(103)

Then, we conclude that:

1
(d)3(s)
E (x) = 1

2

(
1

2π

)n 1

(4π )2

1

n− 4

∫
p2 eipx

(
dn

E p
)

= 1

2

1

(4π )2

1

n− 4
∇2δ(x) (104)

which, in fact, has the form announced in Eq. (9). It is local, since it is
singular whenz= 0 and vanishing forz 6= 0. We have detected another
local singularity. In the finite limit whenn→ 4 we obtain

(4.5.38) 6
(2,2)
0 (p) = − 1

12

[
λ

(4π )2

]2

p2

(
log

p2

4πµ2
+ const.

)
(105)

Subtracting all singularities the propagatorG(2)
0 (x − x′) turns out to be

finite to the secondλ order. But, of course, an ambiguity appears in the
constant of Eq. (105) that must be fixed by a measurement.

ii. In the renormalization theory we must add all the results of the connected
graphs to obtain

(4.5.39) G0(p)−1 = p2

{
1− 1

12

[
λ

(4π )2

]2 1

n− 4

}
+m2

0

+m2

{
λ

(4π )2

[
1

n− 4
+ finite

]}
−
[

λ

(4π )2

]2

×
{

m2

[
2

(n− 4)2
+ 1

2

1

(n− 4)

]
+ finite function ofp2

}
(106)

To eliminate the infinities via renormalization a renormalizedG(p)
is defined as

(4.5.40) G0(p) = z2
1G(p) (107)
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where

(4.5.41) z2
1 = 1+ 1

12

[
λ

(4π )2

]2 1

n− 4
(108)

then up to the orderλ2 we have

(4.5.42) G(p)−1 = p2+m2
0+m2

{
λ

(4π )2

[
1

n− 4
+ finite

]}

−
[

λ

(4π )2

]2{
m2

[
2

(n− 4)2

+ 5

12

1

(n− 4)
+ finite

]}
(109)

and the renormalized mass reads

(4.5.43) m2
0 = m2

{
1− λ

(4π )2

1

(n− 4)
+
[

λ

(4π )2

]2

×
[

2

(n− 4)2
+ 5

12

1

(n− 4)

]}
(110)

Then

G(p)−1 = p2+m2+ finite(p2) (111)

All terms are finite andG(p)−1, m2, are finite(µ) areµ functions;p2 is
the physical constant quantity that originates the renormalization group.
The renormalization of Eqs. (107) and (108) is usually considered as a
wave function renormalization:

(4.5.46) φ0(x) = z1φ(x) (112)

whereφ(x) is the renormalized field.
iii. Using the subtraction recipe Eq. (111) reads

G(p)−1 = p2+m2
0+ finite(p2) (113)

since all the infinities disappear from Eqs. (109) and (110), but a finite
undeterminate constant remains that must be fixed by a measurement that
corresponds to one of the wave function renormalization. As usual,m2

0
and finite(p2) areµ functions that originate the renormalization group.
There will be two equations: one for thep2 coefficients and one for the
remaining terms. Moreover, from Eq. (108) with no infinity we have



P1: GVG/GVM

International Journal of Theoretical Physics [ijtp] PP238-343982 November 7, 2001 7:51 Style file version Nov. 19th, 1999

2170 Castagnino

z1 = 1 and there is no need of the wave function renormalization.22 Then
using our recipe, we get the same result.

5. FIRST METHOD: λφ4 THEORY AT ANY ORDER;
MORE GENERAL λφl THEORIES; SPECULATIONS
ON NON-RENORMALIZABLE THEORIES

We can now follow a well-known path. For theλφ4 theory the superficial
divergence is

(5.2.21) D = 4− N (114)

whereN is the number of external legs of the graph. Then, only graphs withN = 2
andN = 4 have basic divergencies. Moreover the covergence of all the graphs toλ2

can be reduced to prove the convergence of the primitive divergent graph (Ramond,
1981, p. 144), namely the tadpole and the fish graphs, the double scoop graph, and
the setting sun graph (and the nonconnected graphs), which were studied in the
previous sections. These graphs are finite under ordinary renormalization (or if the
subtraction recipe is used). So, repeating these calculations to any order all graphs
of the renormalized theory are finite and the theory turns out to be finite to all
orders (Dyson, 1949; t’Hooft and Veltman, 1972).λφ4 theory can be considered
as renormalizable since it has a finite number of primitive divergent graphs and
therefore a finite number of relevant singular point functions, namely two. So we
now know thatusing subtraction method the theory is directly finite to any order.
The only difference with the counterterms formalism is that now the undetermined
finite coefficients are located at the infinite local singularities. In the renormalizable
case these coefficients combine among themselves in such a way so as to produce
a finite number of undetermined quantities that are computed by a finite number
of measurements, as in the usual theory.

To complete the panorama we can study the problem in more general scalar
field theories. Theories with interactionsλφl with l > 4 turn out to be nonrenor-
malizable because they have an infinite number of primitive divergent graphs and
therefore an infinite number of relevant singular point functions that cannot be
compensated with the finite number of terms of the bare Lagrangian. But the sub-
traction recipe can anyhow be used, making all these singular functions finite, and
these theories would become also finite.So all theories can be made finite if we
use the subtraction recipe.

22This fact must be most welcome since both the “bare” and “renormalized” fields now satisfy
the same equal time commutation relations. Moreover we can introduce a finiteZ−1 coefficient
before p2 if we would like to have a finite wave function renormalization as in Eq. (6.4.18) (see
Brown, 1992).
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In fact, let us consider what we know about this kind of theories:

i. To make the theory finite we must make finite (by renormalization or
subtraction) all the superficially divergent subgraphs (D ≥ 0). The mass
dimension in each term is the superficial divergency.

ii. The divergent terms are polynomials of finite order in the external mo-
mentum. Using dimensional regularization with minimal subtraction the
coefficients of these polynomials are found to contain positive integer pow-
ers of the parameters of the theory multiplied by poles inn− 4 (Brown,
1992, p. 235).23 So the typicaldivergentterm reads

P(p1, p2, . . . , pN) =
∑

Aγαβδ1,...,δN

mαλβ · · ·
(n− 4)γ

pδ1
1 pδ2

2 · · · pδN
N (115)

that under a Fourier transformw(s)
N (x1, x2, . . . , xN) ≈ ∫ dp1

∫
dp2 · · ·∫

dpN P(p1, p2, . . . , pN)e−i x1 p1e−i x2 p2 · · ·e−i xN pN corresponds to the
local singularity:

w(s)
N (x1, x2, . . . , xN) ≈

∑
Aγαβδ1,...,δN

mαλβ · · ·
(n− 4)γ

×∇δ1δ(x1)∇δ2δ(x2) · · · ∇δN δ(xN) (116)

as in Eq. (104), i.e., singularities of the (6) type. All the singularities
∇δi δ(xi ) are well-defined distributions in variablexi (there are no mean-
ingless expressions asδ(0)

∫∞
0 dω that we will consider and eliminate in

the next section) multiplied by infinite poles 1/(n− 4)γ .

So let us compare the two methods:

i. Renormalization: In this case the divergent (115) terms must be compen-
sated by counterterms like

δmα′δλβ
′ · · ·

(n− 4)γ
pδ1

1 pδ2
2 · · · pδN

N (117)

whereα 6= α′ andβ 6= β ′, butα + β = α′ + β ′ in such a way so as to have
the same dimension (or the same superficial divergenceD). It is clear that
in general such counter terms must be infinite and will be only finite in par-
ticular cases (renormalizable theories). Moreover non-renormalizable the-
ories are considered noncontrollable, since they must have an infinite num-
ber of counter terms, implying new interaction terms of growing power.

23There are also non polynomial divergencies. But they can be eliminated, in the computation ofN > 2
functions, if we begin considering the most elementary subgraphs and make minimal subtraction in
these subgraphs, to proceed recursively doing the same in more complex subgraphs and we finish
subtracting the overall divergency of the graph.
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ii. Divergencies will disappear using the subtraction recipe and the theory
will turn out finite anyhow. In fact, as in our method the Lagrangian re-
mains untouched, and we can make the theory finite simply subtracting
the divergent terms. Then all theγ > 0 terms will disappear and
w(r )

N (x1, x2, . . . , xN) will be a well-defined function.24 As from the general
formalism of quantum theory (Haag, 1993) we are used to deal with a host
of infinite divergent point functions,25 to deal with a similar host of finite
point functions, obtained via the subtraction recipe, it cannot be a major
theoretical problem. So under our method both renormalizable and non-
renormalizable theories are finite. Nevertheless, in renormalizable theories
the ambiguous terms are combined in such a way that the unknown param-
eters of the theory can be computed with a finite number of physical data,
while in the case of nonrenormalizable theories this number is infinite.26

Then using our method, non-renormalizable theories most likely make some
sense and, if they have small coupling constants, probably would yield good results,
using a few terms of the perturbation expansion and a few physical data, but of
course we do not know yet if they have any physical relevance. Moreover, in recent
years it has become increasingly apparent that the usual renormalization is not a
fundamental physical requirement (Weinberg, 1995, Vol. 1, p. 518). We stop our
speculation here, since this will be the subject of forthcoming researches.

6. SECOND METHOD

In this section we will try to find a theoretical justification for the subtrac-
tion method, following the authors’ of the following references: Bogolyubovet al.
(1975), Haag (1993), Segal (1947, 1969), and van Hove (1955, 1956, 1957a,b,
1959). We will also find new potentially dangerous divergencies hidden in the
formalism, which will also be eliminated. The quoted authors consider that the
first object that must be taken into account in quantum field theory is the set of
observablesO that we will use (belonging to the space of the relevant observables
O). Then the statesρ can be considered as the functionals over these observables
yielding the mean values (ρ | O). If the spectra of the observables of the problem
are discrete we have (ρ | O) = Tr(ρO). If one or many of these spectra are con-
tinuous the problem is more difficult because the last symbol is ill-defined. This

24In reality we also have an infinite set of counter terms, but not in the Lagrangian; they are the singular
terms of the point functions that must be subtracted from these functions to obtain the regular terms
so that they are precisely located in the place where they are needed.

25Like those listed in footnote 2.
26For example, in theλφ4 theory, the renormalization group shows that all the residues of the poles

depend on those of the first-order poles (Brown, 1992, p. 241). Namely all the ambiguities cor-
responding to higher divergencies depend on the first-order ambiguities, and therefore all these
ambiguities can be computed with just some measurements. In the generalλφl case there is no such
miracle and we must deal with infinite ambiguities.
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happens when, the energy spectrum is continuous. In Laura and Castagnino (1997,
1998) we solve this problem (based on the mathematical structure introduced in
Antoniou et al., 1997), finding good results for many physical problems. In the
present paper we deal with short distance divergences, related with the position
operators, which also have a continuous spectrum. So we will try to adapt the
method of Laura and Castagnino (1997, 1998) to this new problem. But first let us
review the formalism of this paper.

6.1. van Hove Formalism

Let us consider a system with a HamiltonianH with continuous energy spec-
trum 0≤ ω < +∞. In the simple case at least some generalized observables read

O =
∫ ∫

dω dω′ [Oωδ(ω − ω′)+ Oωω′ ]|ω〉〈ω′| (118)

whereOω andOωω′ are regular functions (with properties we will discuss below).
These observables are contained in a spaceO. The introduction of distributions
like δ(ω − ω′) is necessary because the “singular term”Oωδ(ω − ω′) appears in
observables that cannot be left outside the spaceO, like the identity operator,
the Hamiltonian operator, or the operators that commute with the Hamiltonian.
So, even in this simple case the observables containδ functions (while in more
elaborate cases they will also contain other kind of distributions). Symmetrically
a generalized state reads

ρ =
∫ ∫

dω dω′ [ρωδ(ω − ω′)+ ρωω′ ]|ω〉〈ω′| (119)

whereρω andρωω′ also are regular functions (with properties to be defined). These
states are contained in a convex set of statesS. The introduction of distributions like
δ(ω − ω′) is also necessary in this case because the “singular term”ρωδ(ω − ω′)
appears in generalized states that cannot be left outside the setS, like the equilib-
rium state.27 With this mathematical structure it is impossible to calculate some-
thing like Tr(ρO) because the meaningless termsδ(0)

∫∞
0 dω appear.This is the

main problem(if Oω 6= 0 andρω 6= 0). Let us keep in mind that with the old phi-
losophy we are just considering the mean value Tr(ρO) as a simpleinner product
(and in doing so we have the problem ofδ(0)

∫∞
0 dω).

The problem is solved if we consider the characteristic algebra of the operators
A (see the complete version in Castagnino and Ordo˜nez, 2000) containing the space
of the self-adjoint observablesAs, which contain the minimal subalgebrâA of the
observables that commute with the HamiltonianH (that we can consider to be the
typical “diagonal” operators). Then we have

Â ⊂ AS ⊂ A (120)

27Usually this state is not considered in the scattering theory. So it is onlypotentially dangerousfor
more general theories.
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Now we can make the quotient

A
Â
= Vnd (121)

whereVnd would represent the vector space of equivalent classes of operators that
do not commute withH (the “nondiagonal operators”). These equivalence classes
read

[a] = a+ Â, a ∈ A (122)

So we can decomposeA as

A = Â+ Vnd (123)

(this decomposition corresponds to the one in Eq. (118). But neither of the two of
the last two equations is a direct sum, since we can add and subtract an arbitrary
a ∈ Â from each term of the r.h.s. of the last equation.

At this point we can ask ourselves which the measurement apparatuses are that
really matter in the case of decoherence under an evolutione−i Ht . Certainly these
apparatuses are those that measure the observables that commute withH and that
are contained inÂ. Therefore they correspond to diagonal matrices∼δ(ω − ω′).
The apparatuses that measure observables that do not commute withH (that cor-
responds to matrices with off-diagonal terms) are contained inVnd. The terms
corresponding to the second kind of apparatuses (either in the observables or in
the corresponding states) must vanish whent →∞, so they must be endowed with
mathematical properties adequate for producing this limit. Riemann–Lebesgue the-
orem tells us that this fact take places if functionsOωω′ are regular (and also the
ρωω′ , see below). So we define a subalgebra ofA, that can be called a van Hove
algebra, as:

Avh = Â⊕ Vr ⊂ A (124)

where the vector spaceVr is the space of observables withOω = 0 andOωω′ a
regular function. Now the⊕ is a direct sum becausêA containsδ(ω − ω′) and
Vr just regular functions, and a kernel cannot be both aδ and a regular func-
tion. Moreover, as our observables must be selfadjoint, the space of observables
must be

O = AvhS= Â⊕ VrS ⊂ AS (125)

whereVrS contains only self-adjoint operator (namelyO∗ωω′ = Oω′ω). Restriction
(125) is just the choice (coarse-graining) of the relevant measurement apparatuses
for our problem, those that measure the diagonal terms inÂ and those that measure
the nondiagonal terms that vanish whent →∞ in VrS. MoreoverO = AvhS is
dense inAS (because any distribution can be approximated by regular functions)
and therefore essentially it is the minimal possible coarse-graining. Let us call
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|ω) = |ω〉〈ω| the vectors of the basis of̂A and|ω, ω′) = |ω〉〈ω′| of those ofVrS.

Then a generic observable ofO reads

O =
∫

dω Oω|ω)+
∫ ∫

dω dω′ Oω′ |ω, ω′) (126)

which is a vector in the basis{|ω), |ω, ω′)}, whereOω andOωω′ are regular func-
tions (with properties exactly described in Laura and Castagnino (1997, 1998) and
omitted here, as we will do with all the functions that will appear in this brief
review).

The states must be considered as linear functional over the spaceO (O′ the
dual of spaceO (Bogolyubovet al., 1975; Segal, 1947, 1969; van Hove, 1955,
1956, 1957a,b, 1959):

O′ = A′vhS= Â′ ⊕ V ′rS ⊂ A′S (127)

Therefore the states read

ρ =
∫

dω ρω(ω| +
∫ ∫

dω dω′ ρωω′ (ω, ω′| (128)

whereρω andρωω′ are regular functions and{(ω|, (ω, ω′|} is the cobasis of{|ω), |ω,
ω′)}. The set of these generalized states is the convex setS ⊂ O′. Now the mean
value

(ρ | O) =
∫

dω ρωOω +
∫ ∫

dω dω′ ρωω′Oω′ω (129)

is well-defined and yields reasonable physical results (Laura and Castagnino, 1997,
1998).28 In the last equation terms likeδ(0)

∫∞
0 dω have disappeared.This is

the simple trick that allows us to deal with the singularities in a rigorous math-
ematical way and to obtain correct physical results in Laura and Castagnino
(1997, 1998) and Castagnino and Laura (2000).Essentially we have defined a
new observable spaceO that contains the observablesO of Eq. (126) that are
adapted to solve our problem. In this way we have found a method to deal with
the singular terms containing Dirac’s deltas. We are now considering the mean
value (ρ | O) not as an inner product but as the actionfunctionalρ acting on
the vectorO (and theδ(0)

∫∞
0 dω have disappeared). Decoherence is a conse-

quence of Riemann–Lebesgue theorem in the time evolution of the last equation,
namely,

(ρ(t) | O) =
∫

dω ρωOω +
∫ ∫

dω dω′ e−i (ω−ω′)tρωω′Oω′ω (130)

28Moreover, the introduction of the singular observables automatically yield the introduction of the
singular states (Laura and Castagnino, 1997, 1998).
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6.2. The Formalism in the Simplest Case

Let us now use the same technique to deal with the singularities of quantum
field theory. But first let us remember that in quantum field theory there coexists
at least two different mathematical structures:

– The abstract Hilbert spaceH where the fieldφ(x) is an operator and the
vacuum state|0〉 a vector. The multiplication in the characteristic algebra
A is the multiplication of these operators. This is not the place where
divergencies are produced. Therefore we will not modify this structure.

– The vector space of functions ofN(N →∞) variablesx1, x2, . . . , xN where
the functionsφ(x1)φ(x2) · · ·φ(xN) can be considered as the coordinates
of the vectors of a vector spaceN in a basis|x1, x2, . . . , xN). Since we have
proved that really the “functions”φ(x1)φ(x2) · · ·φ(xN) are distributions
or worse, we will give to this space the mathematical structure that we
explained in the previous subsection.29

The characteristic algebra isA = H⊗H⊗N .
Let us begin with the case of just two variables to see the analogy with the

previous section. Then, as the observables likeφ(x)φ(x′) are distributions (or
worse) it is reasonable to consider that all the observables are singular.30 Let us
begin with the simplest case i.e.: with just the singularity (80). Then our observables
would read (like in (118) or (80) withz= x − x′):

O =
∫ ∫

dx dx′
[

Ox

n− 4
δ(x − x′)+ Oxx′

]
|x, x′) (131)

whereOx andOxx′ are regular functions. But if we continue the road of Eqs. (118)
and (119) we will find the same problems as above. On the other hand using the
philosophy just explained,31 we can define the space of observables

O = AvhS= Â⊕ VrS ⊂ AS (132)

whereÂ is now the space of theδ(x − x′)–singularity with pole (n− 4)−1 and
VnS is the space of regular observables measured by physical apparatuses.Ox and

29Mathematically speaking this would be the one of a “nuclear” spaceN , namely the generalization
of the ordinaryN-rank tensor space to the case where theN indices are continuous. In the future we
will base an axiomatic quantum field theory using this mathematical structure.

30We may say that we are using the continuous spectrum of the position operator (Aparicioet al.,
1995a,b; Garc´ıa-Álvarez and Gaioli, 1997), that is−∞ < x < +∞ and define the basis|x, x′) as
|x〉〈x|. But this is not necessary since we can directly say that the spaceN of vectors with coordinates
φ(x)φ(x′) has a basis|x, x′).

31But now referred to the measurement apparatuses, i.e., those that measure variablex, which now
take the role of variableω.
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Oxx′ are regular function andO = AvhS is dense inAS. Then we may transform
the Eq. (131) to make it similar to (126), namely

O =
∫

dx
Ox

n− 4
|x)+

∫ ∫
dx dx′ Oxx′ |x, x′) (133)

so now the observables are vectors of a spaceO ⊂ N ⊗H⊗H of basis
{|x), |x, x′)}. Then the states of this system are just some linear functionals over
the spaceO.

O′ = A′vhS= Â
′ ⊕ V ′r S ⊂ A′S (134)

For a moment let us postulate that the singularities in the states also do exist.32 In
this perspective the state must be linear combinations in the basis{(x|, (x, x′|}
(where{(x|, (x, x′|} is the cobasis of{|x), |x, x′)}), so they must read

ρ =
∫

dxρx(x| +
∫ ∫

dx dx′ ρxx′ (x, x′| (135)

whereρx andρxx′ are regular functions. With these definitions the action of func-
tional (ρ| over the vector|O) reads

(ρ | O) =
∫

dx
ρx Ox

n− 4
+
∫ ∫

dx dx′ ρxx′Ox′x (136)

and it will be well-defined whenn = 4 only if the first term of the r.h.s. vanishes.
But this is precisely the case since, based in the arguments of Section 1.2, we know
that either the real physical observables must be such thatOx = 0, namely they
cannot see the singularities of the states (really because they only are mathematical
artifacts, etc.) orρx = 0 (namely the states cannot see the singularities of the
observables, etc.). Then eitherOx = 0 orρx = 0 and the last equation reads

(ρ | O) =
∫ ∫

dx dx′ ρxx′Ox′x (137)

and therefore we have eliminated the singular termρx Ox/(n− 4) of Eq. (136),
which now has no physical effect.In this way we can justify the elimination ofall
singular terms as we have done with(80)as we will see.33

32This is not really the case as we will see in the next subsection.
33Of course we can also directly say that the term

∫
dxρx Ox/(n− 4) is unphysical. But there is a

difference between Eq. (129) and the last equation. In the former the singular observables see the
singular states and therefore it has two terms. In the latter there are either singular observables or
singular states and they have only one term. Therefore the two coarse-graining use in Sections 6.1
and 6.2 are different. This fact is no surprising since the singular terms (inω) are necessary in the case
of decoherence to represent the diagonal final state but these singular terms (inx) must disappear in
the case of quantum field theory since this is the way divergent poles disappear. The two different
coarse-grainings are introduced to explain two different observed physical facts.
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6.3. The Formalism in the General Case

To generalize this idea let us go back to Eq. (3). We know that the functional
Z[ρ] and its derivatives define the whole theory. Moreover, following the above
ideas it must be written as:34

Z[ρ] = exp i (ρ | O) (138)

where

|O) = |φ(x1)φ(x2) · · ·φ(xN)) (139)

φ(x1)φ(x2) · · ·φ(xN) being the components of a vector|O) ∈ A = N ⊗H⊗H
for any N and

(ρ| = ρ(x1)ρ(x2) · · · ρ(xN)|0〉〈0| (140)

where (ρ| ∈ A′ = N ′ ⊗H⊗H. Remember that what really matters for our analy-
sis is that “functions”φ(x1)φ(x2) · · ·φ(xN) andρ(x1)ρ(x2) · · · ρ(xN) are in spaces
N andN ′ while the way to operate with|0〉〈0| over the fieldφ(x) remains the usual
one since it takes place in spaceH. Moreover, these are the observables and states
that really matter since they defineZ[ρ]. The observable|O) is the generalized
version of Eq. (133); thus

O =
∑

N

[∫
dx1

∫
dx2 · · ·

∫
dxN O(r )

x1x2···xN
|x1, x2, . . . , xN)

+
∑

N,αi ,i

∫
dx1

∫
dx2 · · ·

∫
dxN−i

O(αi ,s)
N,x1x2···xN−i

(n− 4)αi
|N, αi , x1, x2, . . . , xN−i )

]
(141)

for all possibleN and all possible coincidence limits symbolized byi . As before
we can define an observable space

O = AvhS= Â⊕ VrS ⊂ AS (142)

where:

i. The first term in the r.h.s. of Eq. (141) belongs to the spaceVrS, with basis
{|x1, x2, . . . , xN)} and regular functionsO(r )

x1x2···xN
.

ii. The second term of the r.h.s. of Eq. (141) belongs to the spaceÂ, the algebra
of the singularities of Eq. (116) with basis{|N, αi , x1, x2, . . . , xN−i )} and
regular functionsO(αi ,s)

N,x1x2···xN−i
. Then the singular terms are like those of

Eq. (116).

34The next symbol contains a sum over the indicesN = 0, 1, 2,. . .
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(ρ| is the generalized version of the stateρ(x1)ρ(x2) · · · ρ(xN)|0〉〈0|. Then,
if we repeat the reasoning of Eq. (135), these generalized states would read

ρ =
∑

N

∫
dx1

∫
dx2 · · ·

∫
dxN ρ

(r )
x1x2···xN

(x1, x2, . . . , xN |

+
∑

N,αi ,i

∫
dx1

∫
dx2 · · ·

∫
dxN−i ρ

(αi ,s)
N,x1x2···xN−i

(N, αi , x1, x2, . . . , xN−i |
(143)

As above we can defined the state space as

O′ = A′vhS= Â
′ ⊕ V ′rS ⊂ A′S (144)

where

i. The first term of the r.h.s. of Eq. (143) belongs to the spaceV ′rS with basis
{(x1, x2, . . . , xN |} and regular functionsρ(r )

x1x2···xN
.

ii. The second term of the r.h.s. of Eq. (143) belongs to the spaceÂ, with
basis{(N, αi , x1, x2, . . . , xN−i |} and regular functionsρ(αi ,S)

N,x1x2···xN−i
.

Then

(ρ | O) =
∑

N

∫
dx1

∫
dx2 · · ·

∫
dxN ρ

(r )
x1x2···xN

O(r )
x1x2···xN

+
∑

N,αi ,i

∫
dx1

∫
dx2 · · ·

∫
dxN−i ρ

(αi ,s)
N,x1x2···xN−i

O(αi ,s)
N,x1x2···xN−i

(n− 4)−αi

(145)

which is a mathematically well-defined object only whenn→ 4, if only the co-
ordinatesρ(r )

x1x2···xN
andO(r )

x1x2···xN
do not vanish. But this is the case sinceeither

i. the physical observables in reality read

O =
∑

N

[∫
dx1

∫
dx2 · · ·

∫
dxN O(r )

x1x2···xN
|x1, x2, . . . , xN)

]
(146)

since they have only the regular part (because they do not see the singu-
larities of the states, etc.) so they have no singular (n− 4)−αi termsor

ii. the states in reality read

ρ =
∑

N

[∫
dx1

∫
dx2 · · ·

∫
dxN ρ

(r )
x1x2···xN

(x1, x2, . . . , xN |
]

(147)

since they have only the regular part (because they do not see the singu-
larities of the observables, etc.) so they have no singular (n− 4)−αi terms.
But here we have a better argument: they have only a regular part since
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the functionsρ(x1)ρ(x2) . . . ρ(xN) of Eq. (140)are usually considered
regular, with no singularity.

Therefore if we use the functional idea embodied in Eq. (145), or better
Eq. (140), and the regular state of Eq. (146) or regular observables in (147) we just
have

Z[ρ] = expi
∑

N

∫
dx1

∫
dx2 · · ·

∫
dxN O(r )

x1x2···xN
ρ(r )

x1x2···xN
(148)

which is finite, and the same happens with the∂/∂ρ derivatives ofZ[ρ]. Thus
the theory is finite.So the theory becomes finite just supposing that the physi-
cal observables are regular (namely, just using as observables the real physical
apparatuses in our laboratory that give usfinite measurements) or the functions
ρ(x1)ρ(x2) · · · ρ(xN) are regular (which is the usual supposition), and adopting the
functionalapproach based in the ideas ofBogolyubovet al.(1975), Haag (1993),
Segal (1947, 1969), and van Hove (1955, 1956, 1957a,b, 1959). In this way the
subtraction method is justified. Instead if we use the naive usual formalism where
all the characters belong to Hilbert spaces and are multiplied using the ordinary
inner product, Z[ρ] will be singular and the theory must be renormalized.

7. CONCLUSION

Sometimes renormalization is considered as amiracle(Brown, 1992, p. 243;
Ramond, 1981, p. 172). In fact, there is an infinite bare massm0 (which being
infinite can hardly be considered as “bare”), and an infinite counterterm; that plus
the bare mass gives the finite physical “dressed” massm (which being finite is
less dressed than the bare one); there is an infinite bare coupling constant and a
counterterm such that the subtraction of all these infinities gives the right answer.
This is apure miracle!35

Now let us consider the same phenomenon according to the ideas in this
paper: We have chosen the simplest Lorentz-invariant lagrangianL, constructed
using a scalar filedφ, to base our theory. It is too much to assume thatL would give
us the right answers both for long and short distances. In fact, it works remarkably
well for long distances but it behaves badly for short ones, since it produces short
distance singularities in the relevantN-point functions. So let us eliminate these
singularities and we will obtain both the correct short and long distance behavior.
This is the best we can do with LagrangianL and the best we have until more re-
fined Lagrangians will be invented (using perhaps superstrings, membranes, etc.).
Moreover, the singular structure is pointlike and a pure mathematical artifact, and
therefore undetectable by the measurement apparatuses, so it must be eliminated,
in some way or other. So there is no miracle in the finite nature of the theory

35The author himself confesses that it was really difficult to understand and to teach this miracle.
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and there is a logical explanation of what really is going on. All these facts are
embodied in the rigorous mathematical structure of Section 6.

Only aminor miracleremains. The numerical constant of some (renormal-
izable) models are determined by a finite number of measurements, while others
(unrenormalizable) need an infinite number. Really it is a very small miracle com-
pared with the former one. We are used to deal with systems that can be defined
with a finite number of parameters (e.g., mechanical systems) while others have
an infinite number (e.g., the initial conditions of classical electromagnetic fields or
mechanical systems with an infinite number of parameters like fluid with variable
density or viscosity). Then what really remains is a very big practical problem:
how to work and solve quantum field systems similar to the second kind.36 We
do not propose a solution but we believe that we have thrown light upon the real
nature of the problem.
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